Volume 1: Advances in Aerospace Technology
Latest Publications


TOTAL DOCUMENTS

24
(FIVE YEARS 0)

H-INDEX

2
(FIVE YEARS 0)

Published By ASMEDC

9780791844250

Author(s):  
Jonathan Kweder ◽  
Mary Ann Clarke ◽  
James E. Smith

Circulation control (CC) is a high-lift methodology that can be used on a variety of aerodynamic applications. This technology has been in the research and development phase for over sixty years primarily for fixed wing aircraft where the early models were referred to as “blown flaps”. Circulation control works by increasing the near surface velocity of the airflow over the leading edge and/or trailing edge of a lifting surface This phenomenon keeps the boundary layer jet attached to the wing surface thus increasing the lift generated on the surface. The circulation control airflow adds energy to the lift force through conventional airfoil lift production and by altering the circulation of stream lines around the airfoil. For this study, a 10:1 aspect ratio elliptical airfoil with a chord length of 11.8 inches and a span of 31.5 inches was inserted into the West Virginia University Closed Loop Wind Tunnel and was tested at varying wind speeds (80, 100, and 120 feet per second), angle of attack (zero to sixteen degrees), and blowing coefficients, ranging from 0.0006 to 0.0127 depending on plenum pressure. By comparing the non-circulation controlled wing with the active circulation control data, a trend was found as to the influence of circulation control on the stall characteristics of the wing for trailing edge active control. For this specific case, when the circulation control is in use on the 10:1 elliptical airfoil, the stall angle decreased, from eight degrees to six degrees, while providing a 70% increase in lift coefficient. It should be noted that due to the trailing edge location of the circulation control exit jet, a “virtual” camber is created with the free stream air adding length to the overall airfoil. Due to this phenomena, the actual stall angle measured increased from eight degrees on the un-augmented airfoil, to a maximum of twelve degrees.


Author(s):  
Alan M. Didion ◽  
Jonathan Kweder ◽  
Mary Ann Clarke ◽  
James E. Smith

Circulation control technology has proven itself useful in the area of short take-off and landing (STOL) fixed wing aircraft by decreasing landing and takeoff distances, increasing maneuverability and lift at lower speeds. The application of circulation control technology to vertical take-off and landing (VTOL) rotorcraft could also prove quite beneficial. Successful adaptation to helicopter rotor blades is currently believed to yield benefits such as increased lift, increased payload capacity, increased maneuverability, reduction in rotor diameter and a reduction in noise. Above all, the addition of circulation control to rotorcraft as controlled by an on-board computer could provide the helicopter with pitch control as well as compensate for asymmetrical lift profiles from forward flight without need for a swashplate. There are an infinite number of blowing slot configurations, each with separate benefits and drawbacks. This study has identified three specific types of these configurations. The high lift configuration would be beneficial in instances where such power is needed for crew and cargo, little stress reduction is offered over the base line configuration. The stress reduction configuration on the other hand, however, offers little extra lift but much in the way of increased rotor lifespan and shorter rotor length. Finally, the middle balanced configuration offers a middle ground between the two extremes. With this configuration, the helicopter benefits in all categories of lift, stress reduction and blade length reduction.


Author(s):  
Hasan Zolata ◽  
Cesar Celis ◽  
Vishal Sethi ◽  
Riti Singh ◽  
David Zammit-Mangion

Over the past few years, great concern has been raised about the impact of commercial aviation on the environment. In a Business As Usual approach, the expected growth in air traffic is going to affect climate change even more unless mitigation policies are devised and implemented. Although there is a tendency to focus on long-term technological solutions and breakthroughs, short-term improvements applicable to existing aircraft/engine configurations are also very important to fully realise the benefits of new technologies. Aircraft trajectory optimisation presents the opportunity to effectively reduce fuel consumption and pollutants emitted providing a feasible short-term strategy to be applied to the existing aircraft fleet. The present study focuses on preliminary results obtained using a multi-disciplinary aircraft trajectory optimisation simulation framework. Three in-house computational models are implemented in the framework to model the aircraft and engine performance, as well as to predict the level of gaseous emissions produced. A commercially available optimiser is integrated within the framework to analyse and optimise single flight path elements (e.g., climb), as well as the entire flight profile. For the purpose of this study, the climb and the whole flight profile are divided in four and eight segments respectively. Trajectory optimisation processes are then carried out in order to minimise three different objective functions: flight time, fuel burned, and mass of oxides of nitrogen (NOx) emitted. The results of the trajectory optimisation processes performed confirm the validity, effectiveness, and flexibility of the methodology proposed. In future, it is expected that these types of approaches are utilised to efficiently compute complete, optimum and ‘greener’ aircraft trajectories, which help to minimise the impact of commercial aviation on the environment. Other computational models that simulate several other aspects such as aircraft and engine noise, weather conditions and contrails formation, among others, need to be also included in the optimisation processes.


Author(s):  
Chad C. Panther ◽  
Kenny A. Williams ◽  
Jay P. Wilhelm ◽  
James E. Smith

Experimental testing was performed on a circulation controlled airfoil with upper and lower trailing edge blowing slots, controlled by span wise pneumatic valves. The augmented blade was designed for application to a circulation controlled vertical axis wind turbine. The design is based upon a conventional NACA0018 shape, replacing the sharp trailing edge with a rounded Coanda surface and blowing slots. A scale model with a chord of 8 inches and span of 16.5 inches was created using an ABS plastic rapid prototyping machine. In the past, circulation control wind tunnel models have been constructed with a separate blowing slot and trailing edge using conventional machining methods. The slot must be tediously aligned along the span for a consistent height which ultimately affects the uniformity and performance of the circulation control jet in combination with the flow rate. The rapid prototyping machine eased fabrication as a modular trailing edge section was printed which includes the Coanda surface, blowing slot, and diffuser all in one piece. Pressure taps were integrated by the prototyping machine into both the printed skin and trailing edge module. This method left additional space inside the model for circulation control valving components and eliminated the need for machining pressure ports. This paper will outline the model building procedures, wind tunnel test rig, and experimental results. Aerodynamic forces were determined by both load cells and surface pressure measurements; the agreement between the two methods will be analyzed and addressed. Test conditions include various angles of attack (±20°) at Cμ = 0, 0.02, 0.06, and 0.10; the test Reynolds number was kept constant at 300K. The results indicate that the blade performed at ΔCl/Cμ near 30 for Cμ = 0.02.


Author(s):  
Meagan Hubbell ◽  
Steven Hard ◽  
Matthew Boots ◽  
Mary Ann Clarke ◽  
James E. Smith

The ground effect regime was first utilized in the early 1900’s with the advent of transatlantic flight. Aircraft such as the Dornier DO-X would fly close to the surface of the water in order to increase its payload and range. Since that time, research has been periodic with the largest resurgence of ground effect interest in the 1960’s. The Russian government became involved in developing aircraft designed solely for ground effect flight. The design of these aircraft was difficult due to the inherent problems that exist within ground effect. There are natural instabilities that occur, especially in the longitudinal direction that are antagonized by shifting payload weights. Past researchers have handled the unique design requirements of ground effect through the usage of high-tail devices which operate outside of ground effect and power augmented ground effect which artificially generates the lift force through the use of thrust vectoring. The Center for Industrial Research Applications (CIRA) has developed a single passenger, unpowered, subsonic aircraft that relies on gravitational forces for momentum. AirRay combines the benefits of ground effect i.e. the increased lift and decreased induced drag, with a unique approach to maintaining stability. The design of AirRay faced many challenges as a result of flying in the ground effect regime, similar to those found in the prior efforts. These include natural instabilities, primarily in the longitudinal direction, that cause the glider to want to pitch up. In addition the size requirements for a single rider to maximize maneuverability, as well as the potential for updrafts on a downhill slope are added constraints to the design of the ground effect vehicle. These issues, and others, are the subject of current study. This paper has focused on the most important aspect of the design, longitudinal stability. This research has shown positive results with respect to the effectiveness of slots, on passively controlling the movement of the center-of-pressure at varying angles of attack. The 40 degree slot located at 20% of the chord line was most advantageous in stabilizing movement. These results indicate a craft can be designed that can be stable and function in the majority of the flight conditions that have been specified.


Author(s):  
Wilson O. Achicanoy M. ◽  
Carlos F. Rodriguez H.

Uncertainty fusion techniques based on Kalman filtering are commonly used to provide a better estimation of the state of a system. A comparison between three different methods to combine the sensor information in order to improve the estimation of the pose of an autonomous vehicle is presented. Two sensors and their uncertainty models are used to measure the observables states of a process: a Global Positioning System (GPS) and an accelerometer. Given that GPS has low sampling rate and the uncertainty of the position, calculated by double integration from the accelerometer signal, increases with time, first a resetting of the estimator based on accelerometer by the GPS measurement is done. Next, a second method makes the fusion of both sensor uncertainties to calculate the estimation. Finally, a double estimation is done, one for each sensor, and a estimated state is calculated joining the individual estimations. These methods are explained by a case study of a guided bomb.


Author(s):  
Antonio Dumas ◽  
Michele Trancossi ◽  
Stefano Anzillotti

The actual applicative research concerning airships and their use as HAP (High Altitude Platforms for telecommunications and military use) presents new applicative hypothesis of these systems, also concerning energetic high quote production. Authors present the energetic balance of a high quote photovoltaic platform with capability of static hovering realized by electric powered propellers. This is the first step trough the design of the P. S. I. C. H. E. (Photovoltaic Space Island for Conversion of Hydrogen as Energy vector) airship concept: a stratospheric airship which could be considered a platform for hydrogen and oxygen production by photovoltaic. It investigates the behaviour of a similar platform operating at altitudes between 10 and 20 km, positioned at 45° latitude north [1, 2]. This paper analyses the design process for a High Altitude Platform based on photovoltaic energy caption, but the process could be generalized in order to be applied to any airship project. It is considers airship shapes equipped with large PV array that covers energy request during the day. Surplus in power supplies electrolyser equipments for hydrogen and oxygen production from water, which could be captured by atmospheric humidity or brought by an auxiliary airship. Hydrogen and Oxygen are compressed and stored in gas cylinders. With insufficient solar irradiance, with severe wind conditions and during the night, a fuel cell system fed by hydrogen and oxygen tanks supplies power requirements. The Standard Atmosphere Model is used to evaluate PV performance at various operative altitudes. A propulsion system with electric motors grants airship manoeuvrability and hovering. Energy balance of PV-hydrogen energy supply system has been analyzed for three airship shapes with equal volume with concern of overabundant hydrogen and oxygen production. Total weight and payload are calculated in relation to altitude. Storage tanks dimensions and products ground transportation frequency has been estimated. Hydrogen annual production for PV square meter has been evaluated in relation to ground production at the same latitude.


Author(s):  
Lewis N. Payton ◽  
Vishnuvardhan Chandrasekaran

Friction Stir Welding is a solid state “green” welding method developed by The Welding Institute (UK). An internal thermal mapping instrument has been developed which allows for symmetrical mapping of the thermal fields developed by a Friction Stir Welding tool as it passes through the material being welded. This symmetrical mapping conclusively documents statistically the asymmetrical nature of the heat sources within the friction stir welding process. The various models in the literature are compared against these results. A model developed by the authors using classic metal cutting theory predicts the observed thermal fields. A successful predictive model will facilitate tool optimization and welding schedules, while optimizing the mechanical properties of the weld.


Author(s):  
J. S. Rao ◽  
S. Kiran

This paper is concerned with an optimal concept design of aircraft wing from an airfoil. The airfoil itself is generated from CFD studies but there is no baseline of the wing structure. Topology optimization is recently applied for weight reduction given an operating baseline structure; here it is demonstrated that this optimization can be used to derive the concept of the wing structure directly. The optimized concept design is realized in to CAD and then a composite free-size optimization is performed to determine material distribution and ply drop regions etc. Finally a composite size and shape optimization is done and the ribs thus realized are presented.


Sign in / Sign up

Export Citation Format

Share Document