Effect of notch root radius on fatigue crack initiation

1989 ◽  
Vol 114 ◽  
pp. L35-L38 ◽  
Author(s):  
Öktem Vardar ◽  
Vahan Kalenderoǧlu
1991 ◽  
Vol 113 (2) ◽  
pp. 188-194 ◽  
Author(s):  
S. D. Sheppard

This work is focused on explaining observed fatigue crack initiation behavior in notched members in terms of the stress state in a finite volume at the notch root. In principle, this is no different than the work of several other researchers. What is different is the manner in which the stress fields were predicted; namely using the finite element method. By using this approach, no approximations were necessary as to the form of the stress field at the notch root. This implies that this approach is extendable to complex geometries and to the finite life regime where plastic flow is expected at the notch root.


Author(s):  
Gbadebo Owolabi ◽  
Horace Whitworth

Traditional deterministic methods for predicting the fatigue life of notched components require a number of approximations based on heuristics and phenomenological data rather than solid theoretical underpinning and still yield unsatisfactory and inconsistent results when applied to complex components under service loads. Microstructural inhomogeneities in the materials are still an important issue, but are not explicitly accounted for in the traditional deterministic methods. Recent developments in computational crystal plasticity and microstructure-scale modeling have provided deeper understanding of the complex correlations between properties and structures and further indicate the limitations of conventional fatigue life prediction approaches. These modeling approaches have the potential to substantially reduce the need for costly large scale experimental programs to determine scatter in fatigue, for example. At present, however, there is a lack of simulation-based strategy for considering interactive effects of stress/strain field gradients at the notch-root and microstructure-scale behavior in predicting notch-root fatigue crack initiation. In this paper, the distribution of a shear-based fatigue indicator parameter computed within a well-defined fatigue damage process zone at the notch are used along with a novel probabilistic mesomechanics approach to obtain the probability distribution of fatigue crack initiation of notched components, thus extending fatigue life prediction to explicitly incorporate microstructure sensitivity via probabilistic arguments. The new probabilistic framework presented in this paper takes into account the complete plastic shear strain field around the notch root and also links the variation in the materials microstructure and associated slip activations to observable scatter in fatigue strength of the notched component. The use of such probabilistic approach can be beneficial as it avoids conservatism that may result from the use of deterministic approach for fatigue life prediction.


2017 ◽  
Vol 86 (1) ◽  
pp. 56-58
Author(s):  
Seiichiro TSUTSUMI ◽  
Fincato RICCARDO ◽  
Mitsuru OHATA ◽  
Tomokazu SANO

Sign in / Sign up

Export Citation Format

Share Document