Studies on cellular migration in developing cerebral wall using explant culture system

1989 ◽  
Vol 9 ◽  
pp. 54
Author(s):  
Noriyuki Morita ◽  
Kazuhiro Ikenaka ◽  
Masaharu Ogawa ◽  
Katsuhiko Mikoshiba
2020 ◽  
Author(s):  
Alexander Goikoetxea ◽  
Erin L Damsteegt ◽  
Erica V Todd ◽  
Andrew McNaughton ◽  
Neil J Gemmell ◽  
...  

AbstractMany teleost fishes undergo natural sex change, and elucidating the physiological and molecular controls of this process offers unique opportunities not only to develop methods of controlling sex in aquaculture settings, but to better understand vertebrate sexual development more broadly. Induction of sex change in some sequentially hermaphroditic or gonochoristic fish can be achieved in vivo through social manipulation, inhibition of aromatase activity, and steroid treatment. However, the induction of sex change in vitro has been largely unexplored. In this study, we established an in vitro culture system for ovarian explants in serum-free medium for a model sequential hermaphrodite, the New Zealand spotty wrasse (Notolabrus celidotus). This culture technique enabled evaluating the effect of various treatments with 17β-estradiol (E2), 11-ketotestosterone (11KT) or cortisol (CORT) on spotty wrasse ovarian architecture for 21 days. A quantitative approach to measuring the degree of ovarian atresia within histological images was also developed, using pixel-based machine learning software. Ovarian atresia likely due to culture was observed across all treatments including no-hormone controls, but was minimised with treatment of at least 10 ng/mL E2. Neither 11KT nor CORT administration induced proliferation of spermatogonia (i.e. sex change) in the cultured ovaries indicating culture beyond 21 days may be needed to induce sex change in vitro. The in vitro gonadal culture and analysis systems established here enable future studies investigating the paracrine role of sex steroids, glucocorticoids and a variety of other factors during gonadal sex change in fish.


1980 ◽  
Vol 18 (2) ◽  
pp. 243-248 ◽  
Author(s):  
C C Agee ◽  
J A Engelhardt ◽  
M G Gabridge

2014 ◽  
Vol 232 ◽  
pp. 157-164 ◽  
Author(s):  
Gunja K. Pathak ◽  
Helim Aranda-Espinoza ◽  
Sameer B. Shah

2012 ◽  
Vol 90 ◽  
pp. 0-0
Author(s):  
D GHOUBAY ◽  
O SANDALI ◽  
P GOLDSCHMIDT ◽  
J BULLET ◽  
L LAROCHE ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Gaoying Sun ◽  
Wenwen Liu ◽  
Zhaomin Fan ◽  
Daogong Zhang ◽  
Yuechen Han ◽  
...  

Whole organ culture of the spiral ganglion region is a resourceful model system facilitating manipulation and analysis of live sprial ganglion neurons (SGNs). Three-dimensional (3D) cultures have been demonstrated to have many biomedical applications, but the effect of 3D culture in maintaining the SGNs structure and function in explant culture remains uninvestigated. In this study, we used the matrigel to encapsulate the spiral ganglion region isolated from neonatal mice. First, we optimized the matrigel concentration for the 3D culture system and found the 3D culture system protected the SGNs against apoptosis, preserved the structure of spiral ganglion region, and promoted the sprouting and outgrowth of SGNs neurites. Next, we found the 3D culture system promoted growth cone growth as evidenced by a higher average number and a longer average length of filopodia and a larger growth cone area. 3D culture system also significantly elevated the synapse density of SGNs. Last, we found that the 3D culture system combined with neurotrophic factors had accumulated effects in promoting the neurites outgrowth compared with 3D culture or NFs treatment only groups. Together, we conclude that the 3D culture system preserves the structure and function of SGN in explant culture.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10323
Author(s):  
Alexander Goikoetxea ◽  
Erin L. Damsteegt ◽  
Erica V. Todd ◽  
Andrew McNaughton ◽  
Neil J. Gemmell ◽  
...  

Many teleost fishes undergo natural sex change, and elucidating the physiological and molecular controls of this process offers unique opportunities not only to develop methods of controlling sex in aquaculture settings, but to better understand vertebrate sexual development more broadly. Induction of sex change in some sequentially hermaphroditic or gonochoristic fish can be achieved in vivo through social manipulation, inhibition of aromatase activity, or steroid treatment. However, the induction of sex change in vitro has been largely unexplored. In this study, we established an in vitro culture system for ovarian explants in serum-free medium for a model sequential hermaphrodite, the New Zealand spotty wrasse (Notolabrus celidotus). This culture technique enabled evaluating the effect of various treatments with 17β-estradiol (E2), 11-ketotestosterone (11KT) or cortisol (CORT) on spotty wrasse ovarian architecture for 21 days. A quantitative approach to measuring the degree of ovarian atresia within histological images was also developed, using pixel-based machine learning software. Ovarian atresia likely due to culture was observed across all treatments including no-hormone controls, but was minimised with treatment of at least 10 ng/mL E2. Neither 11KT nor CORT administration induced proliferation of spermatogonia (i.e., sex change) in the cultured ovaries indicating culture beyond 21 days may be needed to induce sex change in vitro. The in vitro gonadal culture and analysis systems established here enable future studies investigating the paracrine role of sex steroids, glucocorticoids and a variety of other factors during gonadal sex change in fish.


Development ◽  
1991 ◽  
Vol 113 (4) ◽  
pp. 1365-1373 ◽  
Author(s):  
C. Ffrench-Constant ◽  
A. Hollingsworth ◽  
J. Heasman ◽  
C.C. Wylie

The adhesive extracellular matrix glycoprotein fibronectin is thought to play a central role in cell migration during embryogenesis. In order to define this role, we have examined the response to fibronectin in cell culture of mouse primordial germ cells (PGCs) before, during and after their migration from the hindgut into their target tissue, the genital ridges. Using an explant culture system, we show that PGCs will emigrate from tissue fragments containing hindgut, and that fibronectin stimulates this migration. Adhesion assays show that the start of PGC migration is associated with a fall in adhesion to fibronectin. Double-labelling studies using in situ hybridization and histochemistry demonstrate that migrating PGCs do not contain detectable fibronectin mRNA, suggesting that they do not synthesize and secrete the fibronectin within their migratory substratum. Taken together, these findings are consistent with an important role for fibronectin in stimulating PGC migration. In addition, however, they suggest that the interaction between PGCs and fibronectin may be important in timing the start of migration, with the fall in adhesion allowing the PGCs to commence their migration towards the genital ridges.


Sign in / Sign up

Export Citation Format

Share Document