Component proteins, crosslinks and degradation of sea urchin fertilization membrane

1989 ◽  
Vol 27 ◽  
pp. 46
Author(s):  
Kohji Nomura
Cell ◽  
1977 ◽  
Vol 10 (2) ◽  
pp. 321-328 ◽  
Author(s):  
Michel Veron ◽  
Charles Foerder ◽  
E.M. Eddy ◽  
Bennett M. Shapiro

Development ◽  
1953 ◽  
Vol 1 (3) ◽  
pp. 261-262
Author(s):  
Sven Hörstadius

Dr. I. Joan Lorch, of King's College, London, and I have made some experiments on sea-urchin eggs with desoxynucleic acids (DNA) prepared from sperms of several sea-urchin species by Professor Erwin Chargaff, of Columbia University, New York. Unfertilized eggs did not react when put into a solution of DNA in sea-water. Injection of a small amount of DNA dissolved in Callan's solution had the following consequences. If the DNA did not mix with the cytoplasm but remained as a distinct droplet, the egg could be fertilized. The droplet moved slowly towards the surface and ran out of the egg. This sometimes only occurred after several cleavages. Such eggs developed normally. If, on the other hand, the DNA mixed with the cytoplasm the egg became activated. A fertilization membrane was raised. The surface layer in dark field changed in colour from yellow to white as is the case upon fertilization.


1993 ◽  
pp. 356-358
Author(s):  
Nozomi Nagano ◽  
Kazuki Saito ◽  
Masaru Toriyama ◽  
Masakatsu Imoto ◽  
Terumi Nakajima

Author(s):  
S. Inoue ◽  
E. C. Preddie ◽  
P. Guerrier

From electron microscope studies of thin sections the sea urchin egg is known to be surrounded by the peripheral membrane system which is made up of the outer coat (vitelline membrane), which elevates from an egg surface after fertilization and becomes a part of the fertilization membrane, and the plasma membrane. In these experiments an effort has been made to isolate plasma membranes of sea urchin eggs and these isolated membranes were observed in the electron microscope.The vitelline membrane of the eggs from the sea urchin Strongylocentrotus purpuratus was at first digested away by the treatment with 0.02% trypsin in 0.01 M Tris-HCl buffer (pH 8.0) for 5 minutes at 28°C. The plasma membranes were then isolated according to the method of Song et al. which was used for the isolation of rat liver plasma membranes. The vitelline membrane-free eggs were gently homogenized in 10-3 M NaHC03 (pH 7.5) and freed membranes were collected by centrifugation over a discontinuous sucrose gradient preparation.


1949 ◽  
Vol 26 (2) ◽  
pp. 164-176
Author(s):  
LORD ROTHSCHILD ◽  
M. M. SWANN

1. After insemination of unfertilized eggs of Psammechinus miliaris and before the elevation of the fertilization membrane, a change in cortical structure is propagated over the egg surface or through the cytoplasm. When the fertilizing spermatozoon has become attached, the cortex progressively scatters more light when viewed under dark ground illumination. The cortex, which before fertilization is scarcely distinguishable from the cytoplasm, is white after the reaction is completed. 2. At 18° C. the change covers the egg surface in about 20 sec. 3. The conduction velocity is not uniform, there being a reduction in rate when the change is about halfway round the egg, after which there is a marked increase. 4. The cortex of the unfertilized egg shows a weak positive radial birefringence which disappears at the same time as the dark ground scattering appears. 5. Other changes in the egg structure occur at the same time, and are visible under dark ground illumination. These are: (a) a conical erection appears transiently at the site of sperm attachment; (b) the shape of the egg changes during the reaction; (c) there is a localized and transient decrease in light scattering at the point of entry of the spermatozoon, after the initial increase in cortical light scattering; (d) the fertilization membrane first appears at the point on the surface where the cortical change is initiated. 6. To investigate the possibility that the observed change might be the block to polyspermy, measurements were made of the speeds at which sea-urchin spermatozoa swim. A new technique has been evolved for this purpose. Spermatozoa were photographed under a special dark ground illumination system, with exposures of 0.25 sec. The heads of the spermatozoa trace out tracks on the film, the mean translatory speed being 190 µ/sec. The motion is helicoidal, the frequency of oscillation of the illuminated sperm heads being about 40/sec. 7. By treating the sperm suspension as an assembly of gas molecules, a rough estimate has been made of the frequency of collisions between the spermatozoa and an egg. For sperm densities of 105, 106 and 107/ml., and for the observed translatory sperm speeds, the number of collisions between spermatozoa and those parts of the egg surface unaffected by the propagated change, after it has been initiated, is 1.6, 16 and 160 respectively. 8. Some preliminary experiments on the insemination of oocytes have been carried out to assess the probability of a sperm-egg collision being successful. The results were: (a) oocytes react to insemination by the extrusion of blebs or papillae, each of which is associated with a spermatozoon; (b) this reaction is inhibited by insemination in Ca-free sea water and partially inhibited by acidified sea water. It is concluded that the extrusion of papillae represents an abortive fertilization reaction, the oocyte cortex being unable to propagate a block to polyspermy. The number of papillae extruded is less than the number of sperm-oocyte collisions. 9. The experiments on the insemination of oocytes favour the possibility that attachment of the spermatozoon to an egg is not followed by fertilization unless there exists a particular orientation, on a molecular scale, between the egg and sperm surfaces, and provided there has been no previous interaction between the spermatozoa and Gynogamone II. The low probability of fertilization that this implies is compatible with the hypothesis that the observed cortical change may be the block to polyspermy. Further experiments are needed to resolve this question.


Sign in / Sign up

Export Citation Format

Share Document