Use of chloramphenicol-inherent resistance in protoplast fusion of industrial yeast strains

1991 ◽  
Vol 72 (4) ◽  
pp. 300-302 ◽  
Author(s):  
Toyohiko Yamazaki ◽  
Hideo Nonomura
2020 ◽  
Vol 8 (12) ◽  
pp. 1914
Author(s):  
Elizabeth L. I. Wightman ◽  
Heinrich Kroukamp ◽  
Isak S. Pretorius ◽  
Ian T. Paulsen ◽  
Helena K. M. Nevalainen

Genome-scale engineering and custom synthetic genomes are reshaping the next generation of industrial yeast strains. The Cre-recombinase-mediated chromosomal rearrangement mechanism of designer synthetic Saccharomyces cerevisiae chromosomes, known as SCRaMbLE, is a powerful tool which allows rapid genome evolution upon command. This system is able to generate millions of novel genomes with potential valuable phenotypes, but the excessive loss of essential genes often results in poor growth or even the death of cells with useful phenotypes. In this study we expanded the versatility of SCRaMbLE to industrial strains, and evaluated different control measures to optimize genomic rearrangement, whilst limiting cell death. To achieve this, we have developed RED (rapid evolution detection), a simple colorimetric plate-assay procedure to rapidly quantify the degree of genomic rearrangements within a post-SCRaMbLE yeast population. RED-enabled semi-synthetic strains were mated with the haploid progeny of industrial yeast strains to produce stress-tolerant heterozygous diploid strains. Analysis of these heterozygous strains with the RED-assay, genome sequencing and custom bioinformatics scripts demonstrated a correlation between RED-assay frequencies and physical genomic rearrangements. Here we show that RED is a fast and effective method to evaluate the optimal SCRaMbLE induction times of different Cre-recombinase expression systems for the development of industrial strains.


2005 ◽  
Vol 71 (1) ◽  
pp. 312-319 ◽  
Author(s):  
Shinji Hashimoto ◽  
Mayumi Ogura ◽  
Kazuo Aritomi ◽  
Hisashi Hoshida ◽  
Yoshinori Nishizawa ◽  
...  

ABSTRACT Auxotrophic mutants of the yeast Saccharomyces cerevisiae are usually isolated in haploid strains because the isolation of recessive mutations in diploids is thought to be difficult due to the presence of two sets of genes. We show here that auxotrophic mutants of diploid industrial sake yeast strains were routinely obtained by a standard mutant selection procedure following UV mutagenesis. We isolated His−, Met−, Lys−, Trp−, Leu−, Arg−, and Ura− auxotrophic mutants of five sake strains, Kyokai no. 7, no. 9, no. 10, no. 701, and no. 901, by screening only 1,700 to 3,400 colonies from each treated strain. Wild-type alleles were cloned and used as markers for transformation. With HIS3 as a selectable marker, the yeast TDH3 overexpression promoter was inserted upstream of ATF1, encoding alcohol acetyltransferase, by one-step gene replacement in a his3 mutant of Kyokai no. 7. The resulting strain contained exclusively yeast DNA, making it acceptable for commercial use, and produced a larger amount of isoamyl acetate, a banana-like flavor. We argue that the generally recognized difficulty of isolating auxotrophic mutants of diploid industrial yeast strains is misleading and that genetic techniques used for haploid laboratory strains are applicable for this purpose.


2007 ◽  
Vol 7 (8) ◽  
pp. 1295-1306 ◽  
Author(s):  
Philippe Marullo ◽  
Gael Yvert ◽  
Marina Bely ◽  
Michel Aigle ◽  
Denis Dubourdieu

Author(s):  
Camila Oliveira dos Santos ◽  
Maria Carolina Santos Silva ◽  
Gabriel Luis Castiglioni

Sign in / Sign up

Export Citation Format

Share Document