Fatigue crack growth rates in arctic-grade line pipe steel at high ΔK

1992 ◽  
Vol 26 (11) ◽  
pp. 1693-1694
Author(s):  
C.R. Wake ◽  
J.G. Byrne
1975 ◽  
Vol 97 (4) ◽  
pp. 298-304 ◽  
Author(s):  
O. Vosikovsky

The effects of salt and distilled water environments on fatigue-crack growth rates have been evaluated for an X-65 line-pipe steel. Tests were conducted over a frequency range between 10 and 0.01 Hz, under conditions of cathodic potential and free corrosion. A distinct pattern in the functional dependence of growth rates on ΔK and frequency has been found. Maximum environmental enhancement of growth rates was 50 times that of air at a cathodic potential of −1.04V, and 10 times that of air at a free-corrosion potential of −0.68V. In each case it occurred at the lowest frequency and at relatively high values of ΔK. Hydrogen embrittlement and the two-stage cracking process are examined as the main mechanisms of growth acceleration.


Author(s):  
Apurva Batra ◽  
Jonathan Bowman ◽  
Weiwei Yu ◽  
Ramgopal Thodla ◽  
Colum Holtam ◽  
...  

Acidizing treatments are typically performed intermittently during the life of a well. However, more recently there has been a desire to perform an increased number of acidizing treatments in order to improve production. The acidizing treatments typically involve highly corrosive acids, such as hydrofluoric (HF), hydrochloric (HCl) and acetic acid, which are known to cause significant corrosion, but could also lead to environmentally assisted fatigue and fracture. A study was performed to evaluate the effect of cyclic plastic strains associated with reeling installation on the subsequent fatigue crack growth rate (FCGR) behavior of welded C-Mn line pipe steel in acidizing environments. The influence of the pH of the acidizing environment on the FCGR performance was also investigated as part of this study. This paper compares the results of FCGR tests on as-welded (i.e. unstrained) pipe with those from strained and aged welds, as well as quantifying the effect of the pH of the acidizing treatments. Strained and aged welds were obtained by subjecting the as-welded pipe to 4 cycles of full-scale reeling simulation, with each cycle corresponding to 1% strain. Small-scale compact tension (CT) specimens were then extracted from the strained welds and aged at 250°C for one hour to simulate strain aging. FCGR tests were performed in spent acid with corrosion inhibitor on specimens notched in the parent pipe (PP), heat affected zone (HAZ) and weld centerline (WCL) in both the as-welded and strained and aged condition. The majority of the tests were conducted at room temperature (RT) along with a select few tests at elevated temperature (165°F / 74°C). Overall, the results of frequency scan tests indicated that reeling did not have a significant effect on the FCGR behavior of welded C-Mn line pipe steel in spent acid with inhibitor, regardless of which microstructure was sampled. Frequency scan FCGR tests were also performed on strained and aged samples extracted from the intrados side of the strained welds and notched in the PP, HAZ and WCL to investigate the influence of pH on FCGR behavior. Tests were performed in spent acid with inhibitor at RT, with the pH ranging from 3.7 to 6. The observed FCGRs were higher than in air and all microstructures exhibited a frequency dependence (i.e. the FCGR increased with decreasing frequency). At pH = 3.7, the maximum FCGR was approximately 30 times higher than in air and at pH = 5 the FCGR increased to approximately 80 times higher than in air. However, a further increase in pH to 6 produced a decrease in FCGR. The increase in the maximum FCGR is believed to be due to the decrease in corrosion rate with increasing pH leading to reduced crack closure/blunting. However, as the pH increased to around 6, the corrosion rate decreased substantially, which is likely due to a substantial decrease in the concentration of hydrogen being generated, resulting in a lower FCGR. Paris curve FCGR tests were subsequently conducted on strained and aged samples at 0.1Hz.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 475
Author(s):  
Lukáš Trávníček ◽  
Ivo Kuběna ◽  
Veronika Mazánová ◽  
Tomáš Vojtek ◽  
Jaroslav Polák ◽  
...  

In this work two approaches to the description of short fatigue crack growth rate under large-scale yielding condition were comprehensively tested: (i) plastic component of the J-integral and (ii) Polák model of crack propagation. The ability to predict residual fatigue life of bodies with short initial cracks was studied for stainless steels Sanicro 25 and 304L. Despite their coarse microstructure and very different cyclic stress–strain response, the employed continuum mechanics models were found to give satisfactory results. Finite element modeling was used to determine the J-integrals and to simulate the evolution of crack front shapes, which corresponded to the real cracks observed on the fracture surfaces of the specimens. Residual fatigue lives estimated by these models were in good agreement with the number of cycles to failure of individual test specimens strained at various total strain amplitudes. Moreover, the crack growth rates of both investigated materials fell onto the same curve that was previously obtained for other steels with different properties. Such a “master curve” was achieved using the plastic part of J-integral and it has the potential of being an advantageous tool to model the fatigue crack propagation under large-scale yielding regime without a need of any additional experimental data.


Sign in / Sign up

Export Citation Format

Share Document