Redesigned aircraft landing gear to be analysed for stresses

1987 ◽  
Vol 20 (5) ◽  
pp. 305
2009 ◽  
Vol 2009 (0) ◽  
pp. 321-322
Author(s):  
Kazuhide Isotani ◽  
Kenji Hayama ◽  
Akio Ochi ◽  
Toshiyuki Kumada

Author(s):  
Matt H. Travis

Abstract The feasibility of computing non-linear transient finite element simulations of aircraft landing gear brake whirl and squeal is demonstrated and discussed. Methodology to conduct the high frequency brake transient analysis is developed using an explicit integration finite element approach. Results indicate the approach has the capability to simulate brake dynamic behavior in dynamometer and aircraft landing gear installations — thus enabling evaluation of modifications to braking systems that lead to more stable and robust designs. A simple multi-disk brake model is developed and described. Modeling techniques for including the dynamometer road wheel and runway in the simulations are given. Issues such as piston housing hydraulic fluid stiffness and damping effects, and parametric friction modeling are discussed.


2021 ◽  
pp. 830-840
Author(s):  
Lei Dong ◽  
Zengqiang Chen ◽  
Mingwei Sun ◽  
Qinglin Sun ◽  
ZhenPing Yu

2020 ◽  
Vol 112 ◽  
pp. 100589 ◽  
Author(s):  
Kun Zhao ◽  
Patrick Okolo ◽  
Eleonora Neri ◽  
Peng Chen ◽  
John Kennedy ◽  
...  

Author(s):  
Jaroslaw Pytka ◽  
Jerzy Jozwik ◽  
Tomasz Lyszczyk ◽  
Piotr Budzynski ◽  
Jan Laskowski ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document