damper control
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 11)

H-INDEX

10
(FIVE YEARS 1)

Author(s):  
Soo-Min Kim ◽  
Moon K Kwak ◽  
Taek Soo Chung ◽  
Ki-Seok Song

This study is concerned with the development of multi-input multi-output control algorithms for the active vibration suppression of structures using accelerometer signals and force-type actuators. The concept of the single-input single-output virtual tuned mass damper control algorithm developed in the previous study was extended to cope with multiple natural modes of structure equipped with a limited number of sensors and actuators. Two control algorithms were developed based on the assumption of collocated control. One is the decentralized virtual tuned mass damper control that produces the actuator signal using only the accelerometer signal of that actuator position. The other is the centralized virtual tuned mass damper control that is designed in modal-space, and produces the modal control force using the modal coordinate. Both the theoretical and experimental results show that the proposed control algorithms are effective in suppressing multiple natural modes with a lesser number of sensors and actuators. However, the decentralized virtual tuned mass damper control can be designed and implemented more easily than the centralized virtual tuned mass damper control.


2021 ◽  
pp. 830-840
Author(s):  
Lei Dong ◽  
Zengqiang Chen ◽  
Mingwei Sun ◽  
Qinglin Sun ◽  
ZhenPing Yu

Author(s):  
Mat Hussin Ab Talib ◽  
Mohd Ariff Durranie Muhammad Afandi ◽  
Intan Zaurah Mat Darus ◽  
Hanim Mohd Yatim ◽  
Zainab Asus ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2845
Author(s):  
Bogdan Sapiński ◽  
Paweł Orkisz

This study investigated the self-sensing mechanism in the electromagnetic vibration-based energy harvester (EV-EH) prototype specially engineered for a commercial magnetorheological (MR) damper. The objective of the work is to demonstrate that the EV-EH unit with a specific self-powered feature can also be employed as a relative velocity sensor in the system. To do this, the self-sensing action of the unit was experimentally studied over the assumed range of working conditions. The analysis of the test results and the determined self-sensing function indicated that the EV-EH has a highly accurate monitoring capability. The EV-EH self-sensing and self-powered features confirm the potentials and applicability of the unit for MR damper control in a vibration reduction system with energy regeneration.


2020 ◽  
Vol 12 (8) ◽  
pp. 168781402095054
Author(s):  
Birhan Abebaw Negash ◽  
Wonhee You ◽  
Jinho Lee ◽  
Kwansup Lee

In this research, novel genetic algorithm (nGA) is proposed for Bouc-Wen modle parameters esstimation for magnetorheological (MR) fluid dampers. The optimization efficiency is improved by modifying the crossover and mutation steps of a GA. In the crossover stage, the probability of reproducing offspring from the same parent (same mother and father chromosome) is done to be zero, which may happen in the standard GA, and the probability of a chromosome to be selected for mating is based on error rank weighting of the chromosomes. Additional fitness evaluation of chromosomes will take place in between the crossover and mutation steps to save the best chromosome found so far, which is not implemented in the standard genetic algorithm (GA). The model is validated by comparing its simulation output force ( Fsim) with experimentally generated MR damper force ( Fexp). The mean absolute error, standard deviation and number of generations for convergence are taken as a criterias for performance evaluation. With these ctriterias, the proposed novel GA outperform better than the other researches. The accuracy is improved by 46.67% compared to standard GA. The proposed novel GA for Bouc-Wen model parameter identification can be used for any MR damper control system with better accuracy.


2020 ◽  
Vol 26 (21-22) ◽  
pp. 2037-2049
Author(s):  
Xiao Yan ◽  
Zhao-Dong Xu ◽  
Qing-Xuan Shi

Asymmetric structures experience torsional effects when subjected to seismic excitation. The resulting rotation will further aggravate the damage of the structure. A mathematical model is developed to study the translation and rotation response of the structure during seismic excitation. The motion equations of the structures which cover the translation and rotation are obtained by the theoretical derivations and calculations. Through the simulated computation, the translation and rotation response of the structure with the uncontrolled system, the tuned mass damper control system, and active tuned mass damper control system using linear quadratic regulator algorithm are compared to verify the effectiveness of the proposed active control system. In addition, the linear quadratic regulator and fuzzy neural network algorithm are used to the active tuned mass damper control system as a contrast group to study the response of the structure with different active control method. It can be concluded that the structure response has a significant reduction by using active tuned mass damper control system. Furthermore, it can be also found that fuzzy neural network algorithm can replace the linear quadratic regulator algorithm in an active control system. Because fuzzy neural network algorithm can control the process on an uncertain mathematical model, it has more potential in practical applications than the linear quadratic regulator control method.


Author(s):  
Konstantin Riedl ◽  
Sebastian Schaer ◽  
Julian Kreibich ◽  
Markus Lienkamp ◽  
Shane Cannon ◽  
...  

2020 ◽  
Vol 322 ◽  
pp. 01049
Author(s):  
Michal Kubík ◽  
Filip Jeniš ◽  
Igor Hašlík

The magnetorheological (MR) damper uses magnetorheological fluid which, when subjected to magnetic stimuli, generates an increase of damping forces. A significant problem of these dampers is their poor failsafe ability due to power supply interruption. In the case of faults, the damper remains in a low damping state, which is dangerous. This problem can be solved by accommodating a permanent magnet in the magnetic circuit of the damper. However, the magnetic circuit dynamic of this type of damper has rarely been studied. The main aim of this paper is to introduce the magnetic circuit dynamics of the magnetorheological damper/control valve with a permanent magnet. Firstly, the design of the magnetorheological valve with NdFe42 permanent magnet in the magnetic circuit is introduced. The response time of the magnetic field on the unit step of the control signal was calculated by transient magnetic simulation in Ansys Electronics software. The response time of the magnetic field was simulated in the range of 1.2 to 5 ms depending on the electric current magnitude and orientation. The presented MR damper was manufactured and tested. The experiments prove that the permanent magnet significantly affects the dynamics of the magnetic circuit.


2019 ◽  
Vol 67 (6) ◽  
pp. 493-507
Author(s):  
Ji-Hwan Shin ◽  
Jin-Ho Lee ◽  
Won-Hee You ◽  
Moon K. Kwak

A semi-active virtual tuned mass damper (SAVTMD) control algorithm is developed to suppress vibrations of a railway vehicle by using magneto-rheological (MR) damper. To this end, a virtual-tuned-mass-damper control algorithm analogous to the tuned mass damper was developed prior to the semi-active application. The proposed SAVTMD control algorithm uses the acceleration of the car body directly, so that it is more practical than the sky-hook control algorithm that uses the velocity of the car body. The application of the SAVTMD control to a real MR fluid damper is discussed, and a step-by-step procedure to calculate the command voltage to the driver of the MR fluid damper is presented. A hardwarein-the-loop simulation system developed in the previous study is used to test the SAVTMD control algorithm. The theoretical and experimental results showed that the proposed SAVTMD control algorithm is more effective than is the semi-active sky-hook control in suppressing vibrations of the car body of the railway vehicle by the MR damper.


2019 ◽  
Vol 13 (2) ◽  
pp. 130-134 ◽  
Author(s):  
Zenon Hendzel ◽  
Jakub Wiech

Abstract This article proposes a new swarm control method using distributed proportional-derivative (PD) control for self-organisation of swarm of nonholonomic robots. Kinematics control with distributed proportional-derivative (DPD) controller enables generation of desired robot trajectory achieving collective behaviour of a robotic swarm such as aggregation and pattern formation. Proposed method is a generalisation of virtual spring-damper control used in swarm self-organisation. The article includes the control algorithm synthesis using the Lyapunov control theory and numeric simulations results.


Sign in / Sign up

Export Citation Format

Share Document