aircraft landing gear
Recently Published Documents


TOTAL DOCUMENTS

221
(FIVE YEARS 62)

H-INDEX

12
(FIVE YEARS 3)

2021 ◽  
Vol 12 (1) ◽  
pp. 400
Author(s):  
Quoc-Viet Luong ◽  
Bang-Hyun Jo ◽  
Jai-Hyuk Hwang ◽  
Dae-Sung Jang

This paper adopts an intelligent controller based on supervised neural network control for a magnetorheological (MR) damper in an aircraft landing gear. An MR damper is a device capable of adjusting the damping force by changing the magnetic field generated in electric coils. Applying an MR damper to the landing gears of an aircraft could minimize the impact at landing and increase the impact absorption efficiency. Various techniques proposed for controlling the MR damper in aircraft landing gears require information on the damper force or the mass of the aircraft to determine optimal parameters and control commands. This information is obtained by estimation with a model in a practical operating environment, and the accompanying inaccuracies cause performance degradation. Machine learning-based controllers have also been proposed to address model dependency but require a large number of drop test data. Unlike simulations, which can conduct a large number of virtual drop tests, the cost and time are limited in the actual experimental environment. Therefore, a neural network controller with supervised learning is proposed in this paper to simulate the behavior of a proven controller only with system states. The experimental data generated by applying the hybrid controller with the exact mass and force information, which has demonstrated high performance among the existing techniques, are set as the target for supervised learning. To verify the effectiveness of the proposed controller, drop test experiments using the intelligent controller and the hybrid controller with and without exact information about aircraft mass and force are executed. The experimental results from the drop tests of a landing gear show that the proposed controller maintains superior performance to the hybrid controller without using explicit damper models or any information on the aircraft mass or strut force.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8440
Author(s):  
Fuyang Li ◽  
Zhiguo Wu ◽  
Jingyu Li ◽  
Zhitong Lai ◽  
Botong Zhao ◽  
...  

This paper presents a method for measuring aircraft landing gear angles based on a monocular camera and the CAD aircraft model. Condition monitoring of the aircraft landing gear is a prerequisite for the safe landing of the aircraft. Traditional manual observation has an intense subjectivity. In recent years, target detection models dependent on deep learning and pose estimation methods relying on a single RGB image have made significant progress. Based on these advanced algorithms, this paper proposes a method for measuring the actual angles of landing gears in two-dimensional images. A single RGB image of an aircraft is inputted to the target detection module to obtain the key points of landing gears. The vector field network votes the key points of the fuselage after extraction and scale normalization of the pixels inside the aircraft prediction box. Knowing the pixel position of the key points and the constraints on the aircraft, the angle between the landing gear and fuselage plane can be calculated even without depth information. The vector field loss function is improved based on the distance between pixels and key points, and synthetic datasets of aircraft with different angle landing gears are created to verify the validity of the proposed algorithm. The experimental results show that the mean error of the proposed algorithm for the landing gears is less than 5 degrees on the light-varying dataset.


2021 ◽  
pp. 830-840
Author(s):  
Lei Dong ◽  
Zengqiang Chen ◽  
Mingwei Sun ◽  
Qinglin Sun ◽  
ZhenPing Yu

Aerospace ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 272
Author(s):  
Bang-Hyun Jo ◽  
Dae-Sung Jang ◽  
Jai-Hyuk Hwang ◽  
Yong-Hoon Choi

The landing gear of an aircraft serves to mitigate the vibration and impact forces transmitted from the ground to the fuselage. This paper addresses magneto-rheological (MR) damper landing gear, which provides high shock absorption efficiency and excellent stability in various landing conditions by adjusting the damping force using external magnetic field intensity. The performance and stability of an MR damper was verified through numerical simulations and drop tests that satisfied aviation regulations for aircraft landing gear. In this study, a prototype MR damper landing gear, a drop test jig, and a two-degree-of-freedom model were developed to verify the performance of the MR damper, with real-time control, for light aircraft landing gear. Two semi-active control algorithms, skyhook control and hybrid control, were applied to the MR damper landing gear. The drop tests were carried out under multiple conditions, and the results were compared with numerical simulations based on the mathematical model. It was experimentally verified that as the shock absorption efficiency increased, the landing gear’s cushioning performance significantly improved by 17.9% over the efficiency achieved with existing passive damping.


2021 ◽  
Vol 11 (17) ◽  
pp. 7895
Author(s):  
Byung-Hyuk Kang ◽  
Jai-Hyuk Hwang ◽  
Seung-Bok Choi

This work presents a novel design model of a magnetorheological (MR) fluid-based shock absorber (MR shock absorber in short) that can be applied to an aircraft landing gear system. When an external force acts on an MR shock absorber, pressure loss occurs at the flow path while resisting the fluid flow. During the flow motion, two pressure losses occur: the major loss, which is proportional to the flow rate, and the minor loss, which is proportional to the square of the flow rate. In general, when an MR shock absorber is designed for low stroke velocity systems such as an automotive suspension system, the consideration of the major loss only for the design model is well satisfied by experimental results. However, when an MR shock absorber is applied to dynamic systems that require high stroke velocity, such as aircraft landing gear systems, the minor loss effect becomes significant to the pressure drop. In this work, a new design model for an MR shock absorber, considering both the major and minor pressure losses, is proposed. After formulating a mathematical design model, a prototype of an MR shock absorber is manufactured based on the design parameters of a lightweight aircraft landing gear system. After establishing a drop test for the MR shock absorber, the results of the pressure drop versus stroke/stroke velocity are investigated at different impact energies. It is shown from comparative evaluation that the proposed design model agrees with the experiment much better than the model that considers only the major pressure loss.


2021 ◽  
pp. 147592172110336
Author(s):  
Youngjun Lee ◽  
Jongwoon Park ◽  
Dooyoul Lee

The nondestructive inspection interval is highly related with both system reliability and maintenance burden. Conventional inspection interval decision criteria based on the deterministic crack propagation analysis could require too much frequent inspection or sometimes occur structural failure owing to the rapid crack propagation than expected. The stochastic crack growth analysis method was proposed to compensate for the shortcomings of the deterministic analysis. This research studied the crack growth of aircraft landing gear components based on the equivalent initial flaw size distribution algorithm, and then we assessed failure risk. The calculated risk was validated using Monte-Carlo simulation, and finally, the optimum inspection interval was proposed to satisfy the US Airforce risk management criteria.


Sign in / Sign up

Export Citation Format

Share Document