Surface sediment distribution in the Fram Strait

1993 ◽  
Vol 40 (9) ◽  
pp. 1731-1745 ◽  
Author(s):  
Dierk Hebbeln ◽  
Heinrich Berner
The Sea ◽  
2012 ◽  
Vol 17 (1) ◽  
pp. 16-24 ◽  
Author(s):  
Seok-Yun Kim ◽  
Joo-Bong Jeong ◽  
Byoung-Kwan Lee

2000 ◽  
Vol 164 (3-4) ◽  
pp. 119-137 ◽  
Author(s):  
D. Hebbeln ◽  
M. Marchant ◽  
T. Freudenthal ◽  
G. Wefer

2019 ◽  
Vol 11 (3) ◽  
pp. 229 ◽  
Author(s):  
Kye-Lim Kim ◽  
Bum-Jun Kim ◽  
Yoon-Kyung Lee ◽  
Joo-Hyung Ryu

Tidal flats are associated with complicated depositional and ecological environments, and have changed considerably as a result of the erosion and sedimentation caused by tidal energy; consequently, the surface sediment distribution in tidal flats must be constantly monitored and mapped. Although several studies have been conducted with the aim of classifying intertidal surface sediments using various remote sensing methods combined with field survey, most of these studies were unable to consider various sediment types, due to the low spatial resolution of remotely sensed data. Therefore, previous studies were unable to efficiently describe precise surface sediment distribution maps. In the present study, unmanned aerial vehicle (UAV) red, green, blue (RGB) orthoimagery was used in combination with a field survey (232 samples) to produce a large-scale classification map for surface sediment distribution, in accordance with sedimentology standards, using an object-based method. The object-based method is an effective technique that can classify surface sediment distribution by analyzing its correlations with spectral reflectance, grain size, and tidal channels. Therefore, we distinguished six sediment types based on their spectral reflectance and sediment properties, such as grain composition and statistical parameters. The accuracy assessment of the surface sediment classification based on these six types indicated an overall accuracy of 72.8%, with a kappa coefficient of 0.62 and 5-m error range related to the Global Positioning System (GPS) device. We found that 11 samples were misclassified due to the effects of sun glint and cloud caused by the UAV system and shellfish beds, while 14 misclassified samples were influenced by surface water related to the elevation, tidal channels, and sediment properties. These results indicate that large-scale classification of surface sediment with high accuracy is possible using UAV RGB orthoimagery.


2003 ◽  
Vol 200 (1-4) ◽  
pp. 307-324 ◽  
Author(s):  
Gregg R. Brooks ◽  
Larry J. Doyle ◽  
Richard A. Davis ◽  
Nancy T. DeWitt ◽  
Beau C. Suthard

Sign in / Sign up

Export Citation Format

Share Document