041 Reluctance force characterization of a three degrees-of-freedom VR spherical motor

1993 ◽  
Vol 1 (5) ◽  
pp. 885
Author(s):  
G Castelli ◽  
E Ottaviano ◽  
A González

In this article, a manipulator is presented belonging to the class of cable-suspended robots, for which the cable length variations are related by suitable functions in order to achieve specific kinematic characteristics. In particular, in this article, a Cartesian cable-suspended robot is proposed that has eight cables to have three degrees of freedom (DOF) in Cartesian space. The eight cables of the robot are arranged in parallel by pairs with identical length, with the aim of constraining the moving platform to keep a constant orientation with respect to the fixed frame. The robot can be used for selective compliant assembly robot arm (SCARA) motions (when an additional revolute actuated joint is placed on the moving platform) for a variety of applications in which a large workspace is required. In this article, a geometry analysis of the robot is presented together with a numerical simulation of the kinetostatics and dynamics to investigate the robot's performances in several operative conditions. Furthermore, a characterization of the position workspace regions is reported for this cable-suspended robot.


2013 ◽  
Vol 6 (1) ◽  
Author(s):  
Georg Nawratil

We transfer the basic idea of bonds, introduced by Hegedüs, Schicho, and Schröcker for overconstrained closed chains with rotational joints, to the theory of self-motions of parallel manipulators of Stewart Gough (SG) type. Moreover, we present some basic facts and results on bonds and demonstrate the potential of this theory on the basis of several examples. As a by-product we give a geometric characterization of all SG platforms with a pure translational self-motion and of all spherical three-degrees of freedom (DOF) RPR manipulators with self-motions.


2000 ◽  
Author(s):  
Kok-Meng Lee ◽  
Raye Sosseh

Abstract This paper considers the control of a variable reluctance (VR) spherical motor that offers some unique features by combining the roll, pitch and yaw motion in a single joint. The 3-DOF VR motor has multiple independent inputs, and the output torque is direction varying and orientation-dependent and as a result, the control for such a motor is significantly more challenging than the single-axis motor. We formulate a new three-degrees-of-freedom (3-DOF) VR motor control design tool using backstepping, where the inputs are optimized to achieve minimum total energy consumed. The torque has been derived as a linear combination of the square of the input currents, a form computationally friendlier than its quadratic counterpart for real-time implementation. The overall stability of the system is shown using Lyapunov techniques. Simulation results are illustrated to show the performance of the controller.


1989 ◽  
Vol 111 (3) ◽  
pp. 398-402 ◽  
Author(s):  
K. Kaneko ◽  
I. Yamada ◽  
K. Itao

A spherical DC servo motor with three degrees of freedom is proposed. First, the process of generating three-dimensional torque is analyzed to obtain the torque constant matrix. The matrix elements are shown to vary with rotor inclination, and winding currents are shown to interfere with each other. Then, the dynamics of the spherical motor are investigated theoretically and experimentally, considering torque interference, gyro moment and gravity. Finally, the trajectory of the prototype motor is shown in order to clarify its abilities. This new spherical motor is expected to produce a smaller, a lighter mechanism, since no gears or linkages are needed.


1995 ◽  
Vol 117 (3) ◽  
pp. 378-388 ◽  
Author(s):  
R. B. Roth ◽  
Kok-Meng Lee

This paper presents the basis for optimizing the design of a three degrees-of-freedom (DOF) variable reluctance (VR) spherical motor which offers some attractive features by combining pitch, roll, and yaw motion in a single joint. The spherical wrist motor offers a major performance advantage in trajectory planning and control as compared to the popular three-consecutive-rotational joint wrist. Since an improved performance estimate is required, a method for optimizing the VR spherical motor’s magnetics was developed. This paper begins with a presentation of the geometrical independent and dependent variables which fully described the design of a VR spherical motor. These variables are derived from examination of the torque prediction model. Next, a complete set of constraint equations governing geometry, thermal limitations, amplifier specifications, iron saturation, and leakage flux are derived. Finally, an example problem is presented where the motor’s geometry is determined by maximizing the output torque at one rotor position. The concept of developing a spherical motor with uniform torque characteristics is discussed with respect to the optimization methodology. It is expected that the resulting analysis will improve the analytical torque prediction model by the inclusion of constraint equations, aid in developing future VR spherical motor designs, improve estimates of performance, and therefore will offer better insight into potential applications.


CIRP Annals ◽  
2000 ◽  
Vol 49 (1) ◽  
pp. 289-294 ◽  
Author(s):  
E.h.M. Week ◽  
T. Reinartz ◽  
G. Henneberger ◽  
R.W. De Doncker

Author(s):  
R.J. Horylev ◽  
L.E. Murr

Read has shown that an arbitrary grain boundary has five degrees of freedom associated with it. Three degrees of freedom are necessary to describe the orientation of one grain with respect to the other, while the remaining two degrees of freedom position the boundary plane between the adjacent grains.Figure 1(a) depicts a general twin boundary-grain boundary intersection. The degrees of freedom for the grain boundary are represented by (HKL)1, (HKL)2, Θ, θGB, ø. Two degrees of freedom are contained in the surface orientations of the grains.


Sign in / Sign up

Export Citation Format

Share Document