Elimination of linear parameters in non-linear regressions: A fast and effective method for the determination of binding parameters

1995 ◽  
Vol 31 ◽  
pp. 314
Author(s):  
P. Cognez ◽  
O. Zekri ◽  
J.-L. Burgot ◽  
H. Allain
1995 ◽  
Vol 123 (1) ◽  
pp. 137-142
Author(s):  
Pierre Cognez ◽  
Danielle Pape ◽  
Gwenola Burgot ◽  
Hervé Allain ◽  
Jean-Louis Burgot

2001 ◽  
Vol 700 ◽  
Author(s):  
Anders G. Froseth ◽  
Peter Derlet ◽  
Ragnvald Hoier

AbstractEmpirical Total Energy Tight Binding (TETB) has proven to be a fast and accurate method for calculating materials properties for various system, including bulk, surface and amorphous structures. The determination of the tight binding parameters from first-principles results is a multivariate, non-linear optimization problem with multiple local minima. Simulated annealing is an optimization method which is flexible and “guaranteed” to find a global minimum, opposed to classical methods like non-linear least squares algorithms. As an example results are presented for a nonorthogonal s,p parameterization for Silicon based on the NRL tight binding formalism.


1970 ◽  
Vol 65 (1_Suppl) ◽  
pp. S104-S121 ◽  
Author(s):  
E. E. Baulieu ◽  
J. P. Raynaud ◽  
E. Milgrom

ABSTRACT A brief review of the characteristics of steroid binding proteins found in the plasma and in some target organs is presented, followed by some general remarks on binding »specificity« and binding parameters. Useful techniques for measuring binding parameters at equilibrium are reported, both those which keep the equilibrium intact and those which implicate its disruption. A concept is developed according to which the determination of a specific steroid binding protein is based on the »differential dissociation« of the several steroid binding complexes present in most biological mixtures. Methods which allow determination of the kinetic parameters of the binding systems are also presented. Various representations of the binding and therefore different modes of graphic representation and calculation are discussed, including the recent »proportion graph« method.


Author(s):  
Oldřich Sucharda ◽  
David Mikolášek ◽  
Jiří Brožovský

Abstract This paper deals with the determination of compressive strength of concrete. Cubes, cylinders and re-used test beams were tested. The concrete beams were first subjected to three-point or fourpoint bending tests and then used for determination of the compressive strength of concrete. Some concrete beams were reinforced, while others had no reinforcement. Accuracy of the experiments and calculations was verified in a non-linear analysis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Philippe Thuillier ◽  
David Bourhis ◽  
Jean Philippe Metges ◽  
Romain Le Pennec ◽  
Karim Amrane ◽  
...  

AbstractTo present the feasibility of a dynamic whole-body (DWB) 68Ga-DOTATOC-PET/CT acquisition in patients with well-differentiated neuroendocrine tumors (WD-NETs). Sixty-one patients who underwent a DWB 68Ga-DOTATOC-PET/CT for a histologically proven/highly suspected WD-NET were prospectively included. The acquisition consisted in single-bed dynamic acquisition centered on the heart, followed by the DWB and static acquisitions. For liver, spleen and tumor (1–5/patient), Ki values (in ml/min/100 ml) were calculated according to Patlak's analysis and tumor-to-liver (TLR-Ki) and tumor-to-spleen ratios (TSR-Ki) were recorded. Ki-based parameters were compared to static parameters (SUVmax/SUVmean, TLR/TSRmean, according to liver/spleen SUVmean), in the whole-cohort and according to the PET system (analog/digital). A correlation analysis between SUVmean/Ki was performed using linear and non-linear regressions. Ki-liver was not influenced by the PET system used, unlike SUVmax/SUVmean. The regression analysis showed a non-linear relation between Ki/SUVmean (R2 = 0.55,0.68 and 0.71 for liver, spleen and tumor uptake, respectively) and a linear relation between TLRmean/TLR-Ki (R2 = 0.75). These results were not affected by the PET system, on the contrary of the relation between TSRmean/TSR-Ki (R2 = 0.94 and 0.73 using linear and non-linear regressions in digital and analog systems, respectively). Our study is the first showing the feasibility of a DWB 68Ga-DOTATOC-PET/CT acquisition in WD-NETs.


2020 ◽  
Vol 10 (12) ◽  
pp. 4326
Author(s):  
Józef Pelc

This paper presents a method for modeling of pneumatic bias tire axisymmetric deformation. A previously developed model of all-steel radial tire was expanded to include the non-linear stress–strain relationship for textile cord and its thermal shrinkage. Variable cord density and cord angle in the cord-rubber bias tire composite are the major challenges in pneumatic tire modeling. The variabilities result from the tire formation process, and they were taken into account in the model. Mechanical properties of the composite were described using a technique of orthotropic reinforcement overlaying onto isotropic rubber elements, treated as a hyperelastic incompressible material. Due to large displacements, the non-linear problem was solved using total Lagrangian formulation. The model uses MSC.Marc code with implemented user subroutines, allowing for the description of the tire specific properties. The efficiency of the model was verified in the simulation of mounting and inflation of an actual bias truck tire. The shrinkage negligence effect on cord forces and on displacements was examined. A method of investigating the influence of variation of cord angle in green body plies on tire apparent lateral stiffness was proposed. The created model is stabile, ensuring convergent solutions even with large deformations. Inflated tire sizes predicted by the model are consistent with the actual tire sizes. The distinguishing feature of the developed model from other ones is the exact determination of the cord angles in a vulcanized tire and the possibility of simulation with the tire mounting on the rim and with cord thermal shrinkage taken into account. The model may be an effective tool in bias tire design.


Sign in / Sign up

Export Citation Format

Share Document