Boundary Element Solution of a Three-dimensional Convective Diffusion Equation for Large Peclet Numbers

Author(s):  
Yasuhiro TANAKA ◽  
Toshihisa HONMA
1970 ◽  
Vol 6 (6) ◽  
pp. 1746-1752 ◽  
Author(s):  
C. A. Oster ◽  
J. C. Sonnichsen ◽  
R. T. Jaske

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Sunggeun Lee ◽  
Shin-Kun Ryi ◽  
Hankwon Lim

We investigate the Navier-Stokes equation in the presence of Coriolis force in this article. First, the vortex equation with the Coriolis effect is discussed. It turns out that the vorticity can be generated due to a rotation coming from the Coriolis effect, Ω. In both steady state and two-dimensional flow, the vorticity vector ω gets shifted by the amount of -2Ω. Second, we consider the specific expression of the velocity vector of the Navier-Stokes equation in two dimensions. For the two-dimensional potential flow v→=∇→ϕ, the equation satisfied by ϕ is independent of Ω. The remaining Navier-Stokes equation reduces to the nonlinear partial differential equations with respect to the velocity and the corresponding exact solution is obtained. Finally, the steady convective diffusion equation is considered for the concentration c and can be solved with the help of Navier-Stokes equation for two-dimensional potential flow. The convective diffusion equation can be solved in three dimensions with a simple choice of c.


2018 ◽  
Vol 769 ◽  
pp. 329-335
Author(s):  
Andrey Petrov ◽  
Leonid A. Igumnov

The problem of the effect of a normal harmonic force on a porous beam in a 3D formulation is solved using the boundary-element method. A homogeneous fully saturated elastic porous medium is described using Biot’s mathematical model. The effect of the porosity and permeability parameters on the deflection of the beam and the distribution of pore pressure over the beam thickness is investigated. The comparison of the boundary-element solution with a 2D numerical-analytical one is given.


Sign in / Sign up

Export Citation Format

Share Document