Vertical Earth Pressure on Buried Beams in Granular Materials (Part 1: Test Box Experiment and Numerical Analysis)

Author(s):  
T. Nambu ◽  
K. Sekiguchi ◽  
H. Horiuchi ◽  
Y. Kikuchi
2014 ◽  
Vol 644-650 ◽  
pp. 5039-5045
Author(s):  
Xiao Yang ◽  
Guo Lin Yang

Based on reinforced earth retaining wall of green gabion which is built at the site of seventh project Shaoxing-Zhuji Expressway, the research for soil pressure in a cross section which locate at the site of K38+398kmare made by field test and numerical analysis. The horizontal and vertical earth pressure are studied in the construction, The pressures between field test and numerical analysis which depend on FLAC3D are rough similar. With increased of height in filling soil, the earth pressures on the wall toe in 3 direction such as horizon , vertical, 45°are increased ,and then gradually come to stability after construction. With increased of height in filling soil, the vertical earth pressures is increased, but the distribution for earth pressure at the same height is non-uniform. The horizontal earth pressure on the back of wall surface increases fast at first then decreases a little, which is a single peak-shaped, it distributes along the wall height in non-linear form, the maximum occurs at 1/3H. The result between field test and numerical model are different, because the flexible wall surface has a great affection on unload.


2011 ◽  
Vol 71-78 ◽  
pp. 3338-3341 ◽  
Author(s):  
Jun Jie Zheng ◽  
De Pi Luo ◽  
Qiang Ma

The overburden of high embankment culvert is over 10 m, such high fill always leads large earth pressure on the slab of the culvert. The imperfect ditch covered with geogrid method was employed to reduce the vertical earth pressure on the slab. A series of numerical analyses were performed to investigate the load reduction effect of the imperfect ditch. In the simulation, the number of geogrid layers, the geometry of the load reduction ditches, as well as the location and the stiffness of the geogrid are investigated to analyse the influences on the vertical earth pressures. The results show that the slope angle and the height of the ditch, the plane stiffness of the geogrid have great effect on the load reduction efficiency, ditches with higher height and a slope of 90°lead to a significantly reduction on vertical earth pressures on the crown of culverts. The width of load reduction ditch, number of geogrid layers, the location and spacing of the geogrids have little effect on load reduction, the results can provide references for load reduction of slab culvert.


1993 ◽  
Vol 16 (1-2) ◽  
pp. 111-118 ◽  
Author(s):  
Imre Bojtár ◽  
Katalin Bagi

2011 ◽  
Vol 368-373 ◽  
pp. 2932-2938
Author(s):  
Kui Hua Wang ◽  
Deng Hui Wu ◽  
Shao Jun Ma ◽  
Wen Bing Wu

By means of pseudo-dynamic theory, a new calculating method is presented to calculate the pseudo-dynamic seismic active earth pressure behind rigid retaining wall. Considering time and phase difference within the backfills, the horizontal slices is used to analyze the distribution of seismic active force behind retaining wall in more realistic manner. Under the assumption that the soil backfills are rigid body, the equations derived in this paper can be degenerated to Mononobe-Okabe equations. Through numerical analysis, it is shown that the values of seismic active force obtained from present study are smaller than those obtained from Mononobe-Okabe theory and the distribution of seismic force along the depth of the wall is nonlinear. It is also found that the action point of the total seismic active earth pressure is higher than one third of the wall height, which is corresponding to previous experimental results.


Sign in / Sign up

Export Citation Format

Share Document