flexible wall
Recently Published Documents


TOTAL DOCUMENTS

199
(FIVE YEARS 21)

H-INDEX

20
(FIVE YEARS 2)

Author(s):  
Mikhail A. Mironov ◽  
Andrey V. Shanin ◽  
Andrey I. Korolkov ◽  
Kseniia S. Kniazeva

The problem of a pulse excitation in an acoustic half-space with a flexible wall described by a thin plate equation is studied. The solution is written as a double Fourier integral. A novel technique of estimation of this integral is developed. The surface of integration is deformed in such a way that the integrand is exponentially small everywhere except the neighbourhoods of several ‘special points’ that provide field components. Special attention is paid to the pulse associated with the coincidence point of the branches of the dispersion diagram of the acoustic medium and the plate. This pulse is shown to be a harmonic wave of a finite duration.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1188
Author(s):  
Yiu-Yin Lee

This study addresses the frequency–amplitude relationship of a nonlinear symmetric panel absorber mounted on a flexible wall. In many structural–acoustic works, only one flexible panel is considered in their models with symmetric configuration. There are very limited research investigations that focus on two flexible panels coupled with a cavity, particularly for nonlinear structural–acoustic problems. In practice, panel absorbers with symmetric configurations are common and usually mounted on a flexible wall. Thus, it should not be assumed that the wall is rigid. This study is the first work employing the weighted residual elliptic integral method for solving this problem, which involves the nonlinear multi-mode governing equations of two flexible panels coupled with a cavity. The reason for adopting the proposed solution method is that fewer nonlinear algebraic equations are generated. The results obtained from the proposed method and finite element method agree reasonably well with each other. The effects of some parameters such as vibration amplitude, cavity depth and thickness ratio, etc. are also investigated.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3120
Author(s):  
Abdullah Ali Shaker ◽  
Mosleh Ali Al-Shamrani ◽  
Arif Ali Baig Moghal ◽  
Kopparthi Venkata Vydehi

The hydraulic properties of expansive soils are affected due to the formation of visible cracks in the dry state. Chemical stabilization coupled with fiber reinforcement is often considered an effective strategy to improve the geotechnical performance of such soils. In this study, hydraulic conductivity tests have been conducted on expansive clay using two different types of fibers (fiber cast (FC) and fiber mesh (FM)) exhibiting different surface morphological properties. The fiber parameters include their dosage (added at 0.2% to 0.6% by dry weight of soil) and length (6 and 12 mm). Commercially available lime is added to ensure proper bonding between clay particles and fiber materials, and its dosage was fixed at 6% (by dry weight of the soil). Saturated hydraulic conductivity tests were conducted relying on a flexible wall permeameter on lime-treated fiber-blended soil specimens cured for 7 and 28 days. The confining pressures were varied from 50 to 400 kPa, and the saturated hydraulic conductivity values (ksat) were determined. For FC fibers, an increase in fiber dosage caused ksat values to increase by 9.5% and 94.3% for the 6 and 12 mm lengths, respectively, at all confining pressures and curing periods. For FM fibers, ksat values for samples mixed with 6 mm fiber increased by 12 and 99.2% for 6 and 12 mm lengths, respectively for all confining pressures at the end of the 28-day curing period. The results obtained from a flexible wall permeameter (FWP) were compared with those of a rigid wall permeameter (RWP) available in the literature, and the fundamental mechanism responsible for such variations is explained.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Miah Alam ◽  
Omar Chaallal ◽  
Bertrand Galy

A finite-element (FE) numerical study using PLAXIS-3D software was carried out to reproduce and validate a full-scale experimental in situ test and to investigate the earth pressure on a flexible temporary trench box shield in soft and sensitive clay soil. The excavation trench model was 6 m (20 ft) deep and was considered as nonlinear and anisotropic clay. A 45 kPa (0.94 ksf) surface overload on top of the soil near the trench box was also simulated to produce a maximum load case on the flexible wall of the shield. Both Mohr-Coulomb (MC) and hardening soil (HS) constitutive soil models were considered for FE analysis. Different values of the modulus reduction factor (MRF) and the coefficient of earth pressure at rest ( K 0 ) were considered to validate the model. For a specific shear strength profile, FE analysis with a linear elastoplastic soil model showed relatively small differences in soil pressure with the field test results along the depth of the trench. Results were also compared with the predictions of well-established analytical formulae.


Author(s):  
Atsushi MOHRI ◽  
Yoshiaki KIKUCHI ◽  
Shohei NODA ◽  
Kazuki SAKIMOTO ◽  
Kentarou ICHINOSE ◽  
...  

Author(s):  
Ri-Dong Fan ◽  
Krishna R. Reddy ◽  
Yu-Ling Yang ◽  
Yan-Jun Du

A typical sodium activated calcium bentonite (SACaB) was treated with carboxymethyl cellulose (CMC) polymer, called CMC-treated SACaB (CMC-SACaB), and it was investigated for its hydraulic conductivity and enhanced chemical compatibility. Index property and hydraulic conductivity tests were conducted on CMC-SACaB and SACaB with deionized water (DIW), heavy metals-laden water, and actual landfill leachate. Lead-zinc mixed (Pb-Zn) solution and hexavalent chromium (Cr(VI)) solution were selected as target heavy metals-laden water, and calcium (Ca) solution was tested for comparison purposes. The hydraulic conductivity (kMFL) was determined via the modified fluid loss (MFL) test. Liquid limit and swell index in DIW, heavy metal-laden water, and Ca solution increased with increasing CMC content. CMC treatment effectively decreased the kMFL of SACaB when exposed to Pb-Zn solutions with a metal concentration of 1 to 20 mmol/L and landfill leachate. An insignificant change in kMFL of CMC-SACaB occurred with exposure to Pb-Zn solutions with metal concentrations of 1 to 10 mmol/L, Cr(VI) and Ca solutions with metal concentration of 1 to 20 mmol/L, and landfill leachate. A slight increase in kMFL of CMC-SACaB was observed when Pb-Zn concentration increased to 20 mmol/L, and such an increment was more noticeable when the CMC content was lower than 10%. In the DIW, the measured kMFL values of CMC-SACaB and SACaB with a given range of void ratio were consistent with those obtained from the flexible-wall permeameter test.


Sign in / Sign up

Export Citation Format

Share Document