AN INTELLIGENT CAD SYSTEM FOR MECHANICAL DESIGN

Author(s):  
Nien-Hua Chao
Author(s):  
Tom A. Kuffner ◽  
David G. Ullman

Abstract Design documentation does not typically include all of the information sought by mechanical design engineers. This paper reports on a study of practicing engineers making modifications to existing designs. Particular attention is paid to the design information required to answer questions about the design and to verify or refute conjectures about the design. A taxonomy of the questions asked by the designers in this study and the conjectures they formed is presented. It is proposed that an intelligent CAD system be developed to capture, structure, and re-play this information.


2014 ◽  
Vol 532 ◽  
pp. 249-252
Author(s):  
Ying Hua Liao ◽  
Gao Jun Liu ◽  
Xiang Guo Sun

An intelligent CAD system for Involute cylindrical gear cutting tools is developed by VC++ and SQL server, and it includes four modules, such as user interface, instance query, intelligent gear tool design and database. The intelligent gear tool design is the key to the intelligent CAD system, and it is based on the forward reasoning production system, and as the Intelligent reasoning technology is used for gear tool design, a lots of expert knowledge could be made full use of. The design results by the developed intelligent CAD system are more reasonable than those by a traditional CAD system, and the efficiency and quality of the gear tool design also could be improved. The developed intelligent CAD system supports both 2D and 3D models, which can lay foundation for CAD/CAE/CAM integration of gear cutting tools.


Author(s):  
S. Minami ◽  
T. Ishida ◽  
S. Yamamoto ◽  
K. Tomita ◽  
M. Odamura

Abstract A concept for the initial stage of the mechanical design and its implementation in the computer-aided design (CAD) are presented. The process of decision making in design is: (1) determining an outline of the whole assembly using a 2-dimensional model that is easy to operate; (2) checking the outline using a 3-dimensional model in which it is easy to identify the spatial relationships; (3) determining details of its sub-assemblies or their components using the 2-dimensional model; and (4) checking the details using the 3-dimensional model. The CAD system must provide consistent relationships through all the steps. For that, following functions are implemented in our prototype system: (1) a 2D and 3D integrated model for consistency between 2- and 3-dimensional shapes, (2) a hierarchical assembly model with dimensional constraints for consistency within an assembly and their components, and (3) a check on constraints for consistency between shapes and designers’ intentions. As a result, the system can provide an environment well fitted to the designers’ decision making process.


2011 ◽  
Vol 201-203 ◽  
pp. 1521-1525
Author(s):  
Hong Gen Zhou ◽  
Wen Cheng Tang ◽  
Xu Wen Jing ◽  
Shuai Han

The paper chooses SolidWorks as the developing platform and Electric Equipment as object, researches into the principle of redevelopment by parameter-driving based on 3D feature modeling system of SolidWorks is introduced. Intelligent-CAD system is developed oriented to Electric Equipment by the parametrization structural design actuation technology, the manufacture characteristic automatic diagnosis and the extraction technology, the manufacture characteristic and the design resources, the design knowledge intelligence matching technique and so on. Through applies this system, we should develop the parametrization model of vise crucial element quickly, should extraction and memory components characteristic information and completion of the design features and design resources, design knowledge matching, and so on. The system should achieve to quickly finish product design, to shorten the development cycle and reduce product development costs.


2018 ◽  
Vol 7 (1.8) ◽  
pp. 147 ◽  
Author(s):  
Isad Šarić ◽  
Adis Muminović

This paper presents the process of developing an integrated intelligent CAD system (IICAD) for synthesis and stress-deformation analysis of pressure vessels. The name of the system is IICAD PP system. The goal of the paper is to present procedures and steps to develop IICAD system for specific type of products. These procedures and steps can be used to develop IICAD system for any type of specific products or family of products. IICAD PP system can help engineers during calculation and design of pressure vessels. The paper shows that IICAD PP system enables quick calculations of design parameters, automatic generations of 3D geometrical model and automatic conduction of numerical analysis for stress and deformation. All these design activities take a lot of time from engineers if they are done using conventional methods.


Author(s):  
T. Hirai ◽  
K. Hara ◽  
T. Katayama ◽  
K. Akamatsu ◽  
R. Yokogawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document