The future of the tropical forests

1989 ◽  
pp. 335-337
Author(s):  
F. ORTIZ-CRESPO
Keyword(s):  
Author(s):  
Mason Campbell ◽  
Ainhoa Magrach ◽  
William F. Laurance
Keyword(s):  

2017 ◽  
Author(s):  
Wei Li ◽  
Philippe Ciais ◽  
Chao Yue ◽  
Thomas Gasser ◽  
Shushi Peng ◽  
...  

2020 ◽  
Author(s):  
Wannes Hubau ◽  
Simon L. Lewis ◽  
Oliver L. Phillips ◽  
Hans Beeckman ◽  

<p>Structurally intact tropical forests sequestered ~1 Pg C yr<sup>-1</sup> over the 1990s and early 2000s, equivalent to ~15% of fossil fuel emissions. Climate-driven vegetation models typically predict that this carbon sink will continue for the remainder of the 21<sup>st</sup> century. However, recent plot inventories from Amazonia show a declining rate of carbon sequestration, potentially signaling an imminent end to the sink. Here we assess whether the African tropical forest sink is also declining.</p><p>Records from 244 multi-census plots across 11 countries reveal that the African tropical forest sink in aboveground live biomass has been stable for three decades, at 0.66 Mg C ha<sup>-1</sup> yr<sup>-1</sup>, from 1985-2015 (95% CI, 0.53-0.79). Thus, the carbon sink responses of Earth’s two largest expanses of tropical forest have diverged over recent decades. A statistical model including CO<sub>2</sub>, temperature, drought, and forest dynamics can account for the trends. Despite the past stability of the African carbon sink, our data and model show that very recently the sink has begun decreasing, and that it will continue to decline in the future.  This implies that the intact tropical forest carbon sink on both continents is set to end decades sooner than even the most extreme vegetation model estimates.</p><p>Published independent observations of inter-hemispheric atmospheric CO<sub>2</sub> concentration indicate increasing carbon uptake into the Northern hemisphere landmass, offsetting a weakening of the tropical forest sink, which reinforces our conclusion that the intact tropical forest carbon sink has already saturated. Nevertheless, continued on-the-ground monitoring of the world’s remaining intact tropical forests will be required to test our prediction that the intact tropical forest carbon sink will continue to decline. Our findings were recently published in Nature (March 2020) and have important policy implications: given tropical forests are likely to sequester less carbon in the future than Earth System Models predict, an earlier date to reach net zero anthropogenic greenhouse gas emissions will be required to meet any given commitment to limit the global heating of Earth.</p>


1996 ◽  
Vol 23 (2) ◽  
pp. 156-168 ◽  
Author(s):  
Norman Myers

SummaryThe accelerating decline of many of the world's forests represents one of the greatest problems and opportunities facing the global community. However little it may be recognized in its full scope, the forests crisis constitutes a profound and often irreversible degradation of both the biosphere and humanity's prospects. If this crisis is not contained and countered, extensive sectors of the world may well lose much, if not most, of their forest cover within the foreseeable future. I have drawn on my 30 years of field research in all three major forest biomes, together with my work with dozens of governments and agencies (FAO, the World Bank, etc.), backed by an in-depth review of the literature, to appraise the forests situation from both natural-science and social-science standpoints. My main finding is that deforestation is due partly to our scientific ignorance of forests' contributions to our welfare, both actually and potentially; partly to our meagre economic understanding of what is at stake; and partly to our lack of institutional capacity to manage forests for everybody's benefit, now and forever. I argue that forests are vital to the sustainable well-being of local communities, national economies and the biosphere. Yet they attract too little attention by governments dealing with the future of forests, also dealing with the future of a world that may eventually find itself with only a fraction as many forests as today.I urge that we broaden our understanding of what it will take to save remaining forests. Primarily we should recognize that in the main this is no longer a forestry problem alone. While much can still be achieved through traditional forestry practices, also through more protected areas within forests and other ‘defensive’ measures, these activities often do no more than tackle symptoms of deeper problems. In tropical forests, for instance, we must address the source problem of shiftcd-cultivator encroachment. Anything less is akin to building a fence around tropical forests (which would take an awful lot of timber), a fence that would be speedily over-run by multitudes of land-hungry farmers.There is growing recognition that forests make multiple contributions to the welfare of people throughout forest zones, of people throughout nations concerned, and of people throughout the world. Similarly the forests' survival depends on factors arising throughout the forests themselves, throughout nations concerned, and throughout the world. Fortunately this new recognition has been matched by growing awareness of the rapid decline of the Earth's forests.Much of the policy programme proposed will be difficult. But it will not be so difficult as living in a world bereft of its forests.


2010 ◽  
Vol 3 (6) ◽  
pp. 395-403 ◽  
Author(s):  
Gregory P. Asner ◽  
Scott R. Loarie ◽  
Ursula Heyder

Sign in / Sign up

Export Citation Format

Share Document