The Electron Acoustic Mode

Author(s):  
L.J. BALK
2021 ◽  
Author(s):  
Pavel Shustov ◽  
Anton Artemyev ◽  
Alexander Volokitin ◽  
Ivan Vasko ◽  
Xiao-Jia Zhang ◽  
...  

<p>Recent spacecraft observations of plasma injections reveal abundance of small-scale nonlinear magnetic structures – sub-ion magnetic holes. These structures contribute to magnetosphere-ionosphere coupling and likely responsible for energetic electron scattering. Sub-ion magnetic holes propagate in plasma of two electron components with very different temperatures. Properties of such holes resemble properties of classical magnetosonic solitary waves propagating across the ambient magnetic field, but observations suggest that these holes do not disturb background ions. This study aims to generalize the linear theory of magnetosonic waves by including two electron components. In analog to the electron acoustic mode, cold electrons can act as ions for the generation of magnetosonic mode waves. This unstable electron magnetosonic mode can explain all properties of sub-ion holes in observations. We suggest that sub-ion holes can form during the nonlinear evolution this electron magnetosonic mode. We consider an adiabatic model for investigation of such nonlinear evolution and electron dynamical response to evolving hole electromagnetic field. This model describes slow formation of sub-ion magnetic holes from low-amplitude limit. The adiabatic electron response to such formation can include both electron colling and heating, for populations with different pitch-angles.</p><p>The work was supported by the Russian Scientific Foundation, project 19-12-00313.</p>


2014 ◽  
Vol 81 (1) ◽  
Author(s):  
Manjistha Dutta ◽  
Manoranjan Khan ◽  
Nikhil Chakrabarti

Nonlinear interaction between Langmuir waves and Electron Acoustic Wave (EAW) is being studied in a warm magnetized plasma in presence of two intermingled fluids, hot electrons, and cold electrons while ions forming static background. Two-fluid, two-timescale theory is performed to derive modified Zakharov's equations in a magnetized plasma. These coupled equations describe low-frequency response of electron density due to high-frequency electric field along with magnetic field perturbations. Linear analysis shows coupling between acoustic mode, upper hybrid mode, and cyclotron modes. These modes are found to be modified due to the presence of two electron components. These equations are significant in the context of weak and strong turbulence.


1985 ◽  
Vol 28 (8) ◽  
pp. 2439 ◽  
Author(s):  
S. Peter Gary ◽  
Robert L. Tokar

1977 ◽  
Vol 43 (5) ◽  
pp. 1819-1820 ◽  
Author(s):  
Kunihiko Watanabe ◽  
Tosiya Taniuti

1999 ◽  
Vol 6 (1) ◽  
pp. 44-49 ◽  
Author(s):  
R. L. Mace ◽  
G. Amery ◽  
M. A. Hellberg

2015 ◽  
Vol 81 (6) ◽  
Author(s):  
Frank Verheest

A generic proof has been given that, for the acoustic mode with the highest velocity in a plasma comprising a number of fluid species and one kind of inertialess electrons, even though there can be critical densities (making the coefficient of the quadratic nonlinearity in a Korteweg–de Vries equation vanish), no supercritical densities exist (requiring the simultaneous annulment of both the quadratic and cubic nonlinearities in a reductive perturbation treatment). Similar conclusions hold upon expansion of the corresponding Sagdeev pseudopotential treatment. When there is only one (hot) electron species, the highest-velocity mode is an ion-acoustic one, but if there is an additional cool electron species, with its inertia taken into account, the highest-velocity mode is an electron-acoustic mode in a two-temperature plasma. The cool fluid species can have various polytropic pressure–density relations, including adiabatic and/or isothermal variations, whereas the hot inertialess electrons are modelled by extensions of the usual Boltzmann description that include non-thermal effects through Cairns, kappa or Tsallis distributions. Together, in this way quite a number of plasma models are covered. Unfortunately, there seems to be no equivalent generic statement for the slow modes, so that these have to be studied on a case-by-case basis, which for models with more than three species is far from straightforward, given the parameter ranges to be discussed.


2021 ◽  
Vol 76 (4) ◽  
pp. 329-347
Author(s):  
Swarniv Chandra ◽  
Chinmay Das ◽  
Jit Sarkar

Abstract In this paper we have studied the gradual evolution of stationary formations in electron acoustic waves at a finite temperature quantum plasma. We have made use of Quantum hydrodynamics model equations and obtained the KdV-Burgers equation. From here we showed how the amplitude modulated solitons evolve from double layer structures through shock fronts and ultimately converging into solitary structures. We have studied the various parametric influences on such stationary structure and also showed how the gradual variations of these parameter affect the transition from one form to another. The results thus obtained will help in the generation and structure of the structures in their respective domain. Much of the experiments on dense plasma will benefit from the parametric study. Further we have studied amplitude modulation followed by a detailed study on chaos.


Sign in / Sign up

Export Citation Format

Share Document