scholarly journals Identification of Endoplasmic Reticulum Export Motifs for G Protein-Coupled Receptors

Author(s):  
Guangyu Wu
2007 ◽  
Vol 371 (3) ◽  
pp. 622-638 ◽  
Author(s):  
Jussi T. Tuusa ◽  
Piia M.H. Markkanen ◽  
Pirjo M. Apaja ◽  
Anna E. Hakalahti ◽  
Ulla E. Petäjä-Repo

2014 ◽  
Vol 206 (1) ◽  
pp. 79-95 ◽  
Author(s):  
Govind Kunduri ◽  
Changqing Yuan ◽  
Velayoudame Parthibane ◽  
Katherine M. Nyswaner ◽  
Ritu Kanwar ◽  
...  

The coat protein II (COPII)–coated vesicular system transports newly synthesized secretory and membrane proteins from the endoplasmic reticulum (ER) to the Golgi complex. Recruitment of cargo into COPII vesicles requires an interaction of COPII proteins either with the cargo molecules directly or with cargo receptors for anterograde trafficking. We show that cytosolic phosphatidic acid phospholipase A1 (PAPLA1) interacts with COPII protein family members and is required for the transport of Rh1 (rhodopsin 1), an N-glycosylated G protein–coupled receptor (GPCR), from the ER to the Golgi complex. In papla1 mutants, in the absence of transport to the Golgi, Rh1 is aberrantly glycosylated and is mislocalized. These defects lead to decreased levels of the protein and decreased sensitivity of the photoreceptors to light. Several GPCRs, including other rhodopsins and Bride of sevenless, are similarly affected. Our findings show that a cytosolic protein is necessary for transit of selective transmembrane receptor cargo by the COPII coat for anterograde trafficking.


2012 ◽  
Vol 393 (6) ◽  
pp. 541-546 ◽  
Author(s):  
Maha M. Hammad ◽  
Yi-Qun Kuang ◽  
Alexa Morse ◽  
Denis J. Dupré

Abstract Very little is understood about the trafficking of G protein-coupled receptors (GPCRs) from the endoplasmic reticulum (ER) to the plasma membrane. Rab guanosine triphosphatases (GTPases) are known to participate in the trafficking of various GPCRs via a direct interaction during the endocytic pathway, but whether this occurs in the anterograde pathway is unknown. We evaluated the potential interaction of Rab1, a GTPase known to regulate β2-adrenergic receptor (β2AR) trafficking, and its effect on export from the ER. Our results show that GTP-bound Rab1 interacts with the F(x)6LL motif of β2AR. Receptors lacking the interaction motif fail to traffic properly, suggesting that a direct interaction with Rab1 is required for β2AR anterograde trafficking.


2008 ◽  
Vol 75 (4) ◽  
pp. 751-761 ◽  
Author(s):  
Matthew T. Duvernay ◽  
Chunmin Dong ◽  
Xiaoping Zhang ◽  
Fuguo Zhou ◽  
Charles D. Nichols ◽  
...  

1998 ◽  
Vol 9 (4) ◽  
pp. 885-899 ◽  
Author(s):  
Christopher J. Stefan ◽  
Mark C. Overton ◽  
Kendall J. Blumer

We have addressed the mechanisms governing the activation and trafficking of G protein-coupled receptors (GPCRs) by analyzing constitutively active mating pheromone receptors (Ste2p and Ste3p) of the yeast Saccharomyces cerevisiae. Substitution of the highly conserved proline residue in transmembrane segment VI of these receptors causes constitutive signaling. This proline residue may facilitate folding of GPCRs into native, inactive conformations, and/or mediate agonist-induced structural changes leading to G protein activation. Constitutive signaling by mutant receptors is suppressed upon coexpression with wild-type, but not G protein coupling-defective, receptors. Wild-type receptors may therefore sequester a limiting pool of G proteins; this apparent “precoupling” of receptors and G proteins could facilitate signal production at sites where cell surface projections form during mating partner discrimination. Finally, rather than being expressed mainly at the cell surface, constitutively active pheromone receptors accumulate in post-endoplasmic reticulum compartments. This is in contrast to other defective membrane proteins, which apparently are targeted by default to the vacuole. We suggest that the quality-control mechanism that retains receptors in post-endoplasmic reticulum compartments may normally allow wild-type receptors to fold into their native, fully inactive conformations before reaching the cell surface. This may ensure that receptors do not trigger a response in the absence of agonist.


Sign in / Sign up

Export Citation Format

Share Document