Target-Binding Proteins Based on the 10th Human Fibronectin Type III Domain (10Fn3)

Author(s):  
Shohei Koide ◽  
Akiko Koide ◽  
Daša Lipovšek
2018 ◽  
Vol 83 (6) ◽  
pp. 708-716 ◽  
Author(s):  
L. N. Shingarova ◽  
L. E. Petrovskaya ◽  
A. V. Zlobinov ◽  
S. Sh. Gapizov ◽  
E. A. Kryukova ◽  
...  

Biomaterials ◽  
2013 ◽  
Vol 34 (16) ◽  
pp. 4191-4201 ◽  
Author(s):  
Hayato Matsui ◽  
Fuminori Sakurai ◽  
Kazufumi Katayama ◽  
Yasuhiro Abe ◽  
Mitsuhiro Machitani ◽  
...  

RSC Advances ◽  
2020 ◽  
Vol 10 (26) ◽  
pp. 15154-15162 ◽  
Author(s):  
Wanaporn Yimchuen ◽  
Tetsuya Kadonosono ◽  
Yumi Ota ◽  
Shinichi Sato ◽  
Maika Kitazawa ◽  
...  

A HER2-binding protein, HBP-FLAP, developed by peptide immobilization specifically binds to HER2 and has improved resistance to proteases.


1998 ◽  
Vol 284 (4) ◽  
pp. 1141-1151 ◽  
Author(s):  
Akiko Koide ◽  
Charles W Bailey ◽  
Xiaolin Huang ◽  
Shohei Koide

2011 ◽  
Vol 100 (3) ◽  
pp. 604a
Author(s):  
Andras Czajlik ◽  
Gary Thompson ◽  
Ghulam N. Khan ◽  
Arnout Kalverde ◽  
Steve W. Homans ◽  
...  

2018 ◽  
Vol 50 (4) ◽  
pp. 1574-1584 ◽  
Author(s):  
Xiu-ying Yang ◽  
Margaret C.L. Tse ◽  
Xiang Hu ◽  
Wei-hua Jia ◽  
Guan-hua Du ◽  
...  

Background/Aims: Fibronectin type III domain-containing protein 5 (FNDC5), also known as irisin, is a myokine secreted from muscle in response to exercise. However, the molecular mechanisms that regulate FNDC5 expression and the functional significance of irisn in skeletal muscle remain unknown. In this study, we explored the potential pathways that induce FNDC5 expression and delineated the metabolic effects of irisin on skeletal muscle. Methods: C2C12 myotubes were treated with drugs at various concentrations and durations. The expression and activation of genes were measured by real-time polymerase chain reaction (qRT-PCR) and Western blotting. Oxidative phosphorylation was quantified by measuring the oxygen consumption rate (OCR). Results: We found that the exercise-mimicking treatment (cAMP, forskolin and isoproterenol) increased Fndc5 expression in C2C12 myotubes. CREB over-expressed C2C12 myotubes displayed higher Fndc5 expression. CREB over-expression also promoted peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α) expression. PGC-1α-induced Fndc5 expression was blocked when the dominant negative form of CREB (S133A) was present. PGC-1α mutation (S570A) also decreased Fndc5 expression. Immunoprecipitation showed that overexpressed PGC-1α complexed with CREB in HEK293 cells. C2C12 myotubes treated with forskolin also increased endogenous CREB and PGC-1α binding. Functionally, irisin treatment increased mitochondrial respiration, enhanced ATP production, promoted fatty acid oxidation but decreased glycolysis in myotubes. Conclusion: Our observation indicates that cAMP-mediated PGC-1α/CREB interaction triggers Fndc5 expression, which acts as an autocrine/paracrine to shape the metabolic phenotype of myotubes.


Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1625 ◽  
Author(s):  
Byeongjin Moon ◽  
Juyeon Lee ◽  
Sang-Ah Lee ◽  
Chanhyuk Min ◽  
Hyunji Moon ◽  
...  

Apoptotic cells expressing phosphatidylserine (PS) on their cell surface are directly or indirectly recognized by phagocytes through PS-binding proteins. The PS-binding protein Tim-4 secures apoptotic cells to phagocytes to facilitate the engulfment of apoptotic cells. However, the molecular mechanism by which Tim-4 transduces signals to phagocytes during Tim-4-mediated efferocytosis is incompletely understood. Here, we report that Tim-4 collaborates with Mertk during efferocytosis through a biochemical interaction with Mertk. Proximal localization between the two proteins in phagocytes was observed by immunofluorescence and proximal ligation assays. Physical association between Tim-4 and Mertk, which was mediated by an interaction between the IgV domain of Tim-4 and the fibronectin type-III domain of Mertk, was also detected with immunoprecipitation. Furthermore, the effect of Mertk on Tim-4-mediated efferocytosis was abolished by GST-MertkFnIII, a soluble form of the fibronectin type-III domain of Mertk that disrupts the interaction between Tim-4 and Mertk. Taken together, the results from our study suggest that a physical interaction between Tim-4 and Mertk is necessary for Mertk to enhance efferocytosis mediated by Tim-4.


Sign in / Sign up

Export Citation Format

Share Document