apoptotic cells
Recently Published Documents


TOTAL DOCUMENTS

2033
(FIVE YEARS 232)

H-INDEX

143
(FIVE YEARS 7)

2022 ◽  
Vol 12 (2) ◽  
pp. 373-380
Author(s):  
Xuecheng Sun ◽  
Tao Wang ◽  
Bo Huang ◽  
Gaobo Ruan ◽  
Jun Huang ◽  
...  

Background: Vitiligo, a chronic, autoimmune destruction of melanocytes, caused by the disappearance of epidermal melanocytes, but the mechanism is not fully understood. Although emerging evidence demonstrated that abnormal regulation of microRNAs (miRNAs) were associated with the pathogenesis of diseases, the functions of miR-637 in vitiligo remain unclear. Objective: This research was designed to explore the potential roles of miR-637 in hydrogen peroxide (H2O2)-induced human primary melanocytes in vitiligo. Methods: Human primary melanocytes were induced by 250 μmol/L H2O2 for 4 h to establish oxidative injury of melanocytes model. Cell viability and apoptosis analyzed by MTT and flow cytometry assay, respectively. The relevance between miR-637 and transient receptor potential melastatin 2 (TRPM2) was checked using TargetScan and dual luciferase reporter gene assay. The expression of miR-637 and TRPM2 was evaluated using qRT-PCR and/or Western blot analysis. Reactive oxygen species (ROS) accumulation, superoxide dismutase (SOD) and catalase (CAT) activities were measured using specific assay kits. In addition, the expression of Bcl-2 and Bax were evaluated using Western blot assay. Results: TRPM2 was up-regulated, while miR-637 was down-regulated in H2O2-stimulated human primary melanocytes. TRPM2 directly interacted with miR-637. Up-regulation of miR-637 memorably increased miR-637 level and inhibited TRPM2 expression. Furthermore, miR-637 mimic fortified cell viability, reduced apoptotic cells, enhanced Bcl-2 expression, reduced Bax level, as well as inhibited the ratio of Bax/Bcl-2 in H2O2-induced melanocytes. Meanwhile, miR-637 mimic obviously suppressed the accumulation of ROS and increased SOD and CAT activity. Nevertheless, all these findings were inverted by TRPM2-plasmid. Likewise, TRPM2-siRNA led to increased cell viability, reduced apoptotic cells, enhanced Bcl-2 expression, reduced Bax level, inhibited Bax/Bcl-2 ratio, inhibited ROS production, but increased SOD and CAT activity in H2O2-induced melanocytes. Conclusion: Our findings suggested that TRPM2 was up-regulated, while miR-637 was down-regulated in injurious melanocytes of vitiligo. Up-regulation of miR-637 relieved oxidative stress-stimulated melanocyte injury via down-regulating TRPM2 expression. Our results provide new insights into the functions of miR-637 in the development of vitiligo, indicating that miR-637 may be a latent target for vitiligo therapy.


Author(s):  
Ok-Hee Kim ◽  
Geun-Hyung Kang ◽  
June Hur ◽  
Jinwook Lee ◽  
YunJae Jung ◽  
...  

AbstractApoptotic cells are rapidly engulfed and removed by phagocytes after displaying cell surface eat-me signals. Among many phospholipids, only phosphatidylserine (PS) is known to act as an eat-me signal on apoptotic cells. Using unbiased proteomics, we identified externalized phosphatidylinositides (PIPs) as apoptotic eat-me signals recognized by CD14+ phagocytes. Exofacial PIPs on the surfaces of early and late-apoptotic cells were observed in patches and blebs using anti-PI(3,4,5)P3 antibody, AKT- and PLCδ PH-domains, and CD14 protein. Phagocytosis of apoptotic cells was blocked either by masking exofacial PIPs or by CD14 knockout in phagocytes. We further confirmed that exofacial PIP+ thymocytes increased dramatically after in vivo irradiation and that exofacial PIP+ cells represented more significant populations in tissues of Cd14−/− than WT mice, especially after induction of apoptosis. Our findings reveal exofacial PIPs to be previously unknown cell death signals recognized by CD14+ phagocytes.


Author(s):  
Ram Wagle ◽  
Young-Han Song

Abstract Background Cranial radiation therapy for treating childhood malignancies in the central nervous system or accidental radiation exposure may result in neurological side effects in surviving adults. As tissue homeostasis is maintained by stem cells, understanding the effect of radiation on neural stem cells will provide clues for managing the neurological effects. Drosophila embryos were used as a model system whose sensitivity to irradiation-induced cell death changes from the sensitive to resistant stage during development. Objective Drosophila embryos at the radiation-sensitive stage were irradiated at various doses and the radiation sensitivity was tested regarding the appearance of apoptotic cells in the embryos and the embryonic lethality. Cell fates of the neural stem cells called neuroblasts (NBs) and adult motor function after irradiation were also investigated. Result Irradiation of Drosophila embryos at the radiation-sensitive stage resulted in a dose-dependent increase in the number of embryos containing apoptotic cells 75 min after treatment starting at 3 Gy. Embryonic lethality assayed by hatch rate was induced by 1 Gy irradiation, which did not induce cell death. Notably, no apoptosis was detected in NBs up to 2 h after irradiation at doses as high as 40 Gy. At 3 h after irradiation, as low as 3 Gy, the number of NBs marked by Dpn and Klu was decreased by an unidentified mechanism regardless of the cell death status of the embryo. Furthermore, embryonic irradiation at 3 Gy, but not 1 Gy, resulted in locomotor defects in surviving adults. Conclusion Embryonic NBs survived irradiation at doses as high as 40 Gy, while cells in other parts of the embryos underwent apoptosis at doses higher than 3 Gy within 2 h after treatment. Three hours after exposure to a minimum dose of 3 Gy, the number of NBs marked by Dpn and Klu decreased, and the surviving adults exhibited defects in locomotor ability.


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Guolin Pi ◽  
Wenxin Song ◽  
Zijuan Wu ◽  
Yali Li ◽  
Huansheng Yang

Abstract Background The intestinal porcine enterocyte cell line (IPEC-J2) is a well-established model to study porcine intestinal physiology. IPEC-J2 cells undergo spontaneous differentiation during culture while changes in expression patterns of differentiated IPEC-J2 remain unclear. Therefore, this study was aimed to investigate the expression profiles of IPEC-J2 cells at the transcriptional level. Differentially expressed genes (DEGs), enriched pathways and potential key genes were identified. Alkaline phosphatase (AKP) and percentages of apoptotic cells were also measured. Results Overall, a total of 988 DEGs were identified, including 704 up-regulated and 284 down-regulated genes. GO analysis revealed that epithelial cell differentiation, apoptotic signaling pathway, regulation of cytokine production and immune system process, regulation of cell death and proliferation, cell junction complexes, and kinase binding were enriched significantly. Consistently, KEGG, REACTOME, and CORUM analysis indicated that cytokine responses modulation may be involved in IPEC-J2 differentiation. Moreover, AKP activity, a recognized marker of enterocyte differentiation, was significantly increased in IPEC-J2 after 14 days of culture. Meanwhile, annexin V-FITC/PI assay demonstrated a remarkable increase in apoptotic cells after 14 days of culture. Additionally, 10 hub genes were extracted, and STAT1, AKT3, and VEGFA were speculated to play roles in IPEC-J2 differentiation. Conclusions These findings may contribute to the molecular characterization of IPEC-J2, and may progress the understanding of cellular differentiation of swine intestinal epithelium.


eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Omar Peña-Ramos ◽  
Lucia Chiao ◽  
Xianghua Liu ◽  
Xiaomeng Yu ◽  
Tianyou Yao ◽  
...  

Autophagosomes are double-membrane intracellular vesicles that degrade protein aggregates, intracellular organelles, and other cellular components. During the development of the nematode Caenorhabditis elegans, many somatic and germ cells undergo apoptosis. These cells are engulfed and degraded by their neighboring cells. We discovered a novel role of autophagosomes in facilitating the degradation of apoptotic cells using a real-time imaging technique. Specifically, the double-membrane autophagosomes in engulfing cells are recruited to the surfaces of phagosomes containing apoptotic cells and subsequently fuse to phagosomes, allowing the inner vesicle to enter the phagosomal lumen. Mutants defective in the production of autophagosomes display significant defects in the degradation of apoptotic cells, demonstrating the importance of autophagosomes to this process. The signaling pathway led by the phagocytic receptor CED-1, the adaptor protein CED-6, and the large GTPase dynamin (DYN-1) promotes the recruitment of autophagosomes to phagosomes. Moreover, the subsequent fusion of autophagosomes with phagosomes requires the functions of the small GTPase RAB-7 and the HOPS complex components. Further observations suggest that autophagosomes provide apoptotic cell-degradation activities in addition to and in parallel of lysosomes. Our findings reveal that, unlike the single-membrane, LC3-associated phagocytosis (LAP) vesicles reported for mammalian phagocytes, the canonical double-membrane autophagosomes facilitate the clearance of C. elegans apoptotic cells. These findings add autophagosomes to the collection of intracellular organelles that contribute to phagosome maturation, identify novel crosstalk between the autophagy and phagosome maturation pathways, and discover the upstream signaling molecules that initiate this crosstalk.


Cell Reports ◽  
2022 ◽  
Vol 38 (2) ◽  
pp. 110222
Author(s):  
Alexandra L. McCubbrey ◽  
Shannon A. McManus ◽  
Jazalle D. McClendon ◽  
Stacey M. Thomas ◽  
Hope B. Chatwin ◽  
...  
Keyword(s):  

Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 82
Author(s):  
Bence Lázár ◽  
Nikolett Tokodyné Szabadi ◽  
Mahek Anand ◽  
Roland Tóth ◽  
András Ecker ◽  
...  

The primordial germ cells (PGCs) are the precursors for both the oocytes and spermatogonia. Recently, a novel culture system was established for chicken PGCs, isolated from embryonic blood. The possibility of PGC long-term cultivation issues a new advance in germ cell preservation, biotechnology, and cell biology. We investigated the consequence of gga-miR-302b-5P (5P), gga-miR-302b-3P (3P) and dual inhibition (5P/3P) in two male and two female chicken PGC lines. In treated and control cell cultures, the cell number was calculated every four hours for three days by the XLS Imaging system. Comparing the cell number of control and treated lines on the first day, we found that male lines had a higher proliferation rate independently from the treatments. Compared to the untreated ones, the proliferation rate and the number of apoptotic cells were considerably reduced at gga-miR-302b-5P inhibition in all PGC lines on the third day of the cultivation. The control PGC lines showed a significantly higher proliferation rate than 3P inhibited lines on Day 3 in all PGC lines. Dual inhibition of gga-miR-302b mature miRNAs caused a slight reduction in proliferation rate, but the number of apoptotic cells increased dramatically. The information gathered by examining the factors affecting cell proliferation of PGCs can lead to new data in stem cell biology.


2021 ◽  
Vol 12 ◽  
Author(s):  
Omayra Martin-Rodriguez ◽  
Thierry Gauthier ◽  
Francis Bonnefoy ◽  
Mélanie Couturier ◽  
Anna Daoui ◽  
...  

Nonresolving inflammation is a critical driver of several chronic inflammatory diseases, including inflammatory bowel diseases (IBD). This unresolved inflammation may result from the persistence of an initiating stimulus or from the alteration of the resolution phase of inflammation. Elimination of apoptotic cells by macrophages (a process called efferocytosis) is a critical step in the resolution phase of inflammation. Efferocytosis participates in macrophage reprogramming and favors the release of numerous pro-resolving factors. These pro-resolving factors exert therapeutic effects in experimental autoimmune arthritis. Here, we propose to evaluate the efficacy of pro-resolving factors produced by macrophages after efferocytosis, a secretome called SuperMApo, in two IBD models, namely dextran sodium sulfate (DSS)-induced and T cell transfer-induced colitis. Reintroducing these pro-resolving factors was sufficient to decrease clinical, endoscopic and histological colitis scores in ongoing naive T cell-transfer-induced colitis and in DSS-induced colitis. Mouse primary fibroblasts isolated from the colon demonstrated enhanced healing properties in the presence of SuperMApo, as attested by their increased migratory, proliferative and contractive properties. This was confirmed by the use of human fibroblasts isolated from patients with IBD. Exposure of an intestinal epithelial cell (IEC) line to these pro-resolving factors increased their proliferative properties and IEC acquired the capacity to capture apoptotic cells. The improvement of wound healing properties induced by SuperMApo was confirmed in vivo in a biopsy forceps-wound colonic mucosa model. Further in vivo analysis in naive T cell transfer-induced colitis model demonstrated an improvement of intestinal barrier permeability after administration of SuperMApo, an intestinal cell proliferation and an increase of α-SMA expression by fibroblasts, as well as a reduction of the transcript coding for fibronectin (Fn1). Finally, we identified TGF-β, IGF-I and VEGF among SuperMApo as necessary to favor mucosal healing and confirmed their role both in vitro (using neutralizing antibodies) and in vivo by depleting these factors from efferocytic macrophage secretome using antibody-coated microbeads. These growth factors only explained some of the beneficial effects induced by factors released by efferocytic macrophages. Overall, the administration of pro-resolving factors released by efferocytic macrophages limits intestinal inflammation and enhance tissue repair, which represents an innovative treatment of IBD.


2021 ◽  
Vol 14 (12) ◽  
pp. 1805-1812
Author(s):  
Sae-Byeok Hwang ◽  
◽  
Ji-Yun Park ◽  
Soon-Suk Kang ◽  
Ho Seok Chung ◽  
...  

AIM: To characterize the anti-inflammatory and anti-apoptotic effects of N-acetylcysteine (NAC) in streptozotocin (STZ)-induced diabetic rat corneal epithelium and human corneal epithelial cells (HCECs) exposed to a high-glucose environment. METHODS: HCECs were incubated in 0, 5, 50 mmol/L glucose medium, or 50 mmol/L glucose medium with NAC for 24h. Diabetes was induced in rats by intraperitoneal injection of 65 mg/kg STZ and some of these rats were topically administered NAC to corneas with 3 mice per group. We characterized receptor for advanced glycation end-products (RAGE) expression using immunofluorescence, and interleukin (IL)-1β and cleaved caspase-3 (CCAP-3) expression using immunohistochemistry. Circulating tumor necrosis factor (TNF)-α concentration was measured by ELISA and cleaved poly-ADP ribose polymerase (PARP) concentration was quantified by Western blotting. Apoptotic cells were detected using TUNEL assay and annexin V and propidium iodide staining. RESULTS: Diabetic rats had higher expression of RAGE (2.46±0.13 fold), IL-1β, and CCAP-3 in apoptotic cells of their corneas than control rats. The expression of RAGE (1.83±0.11 fold), IL-1β, and CCAP-3, and the number of apoptotic cells, were reduced by topical NAC treatment. HCECs incubated in 50 mmol/L glucose medium showed high concentrations of TNF-α (310±2.00 pg/mL) and cleaved PARP (7.43±0.56 fold), and more extensive apoptosis than cells in 50 mmol/L glucose medium. However, the addition of NAC reduced the concentrations of TNF-α (153.67±2.31 pg/mL) and cleaved PARP (5.55±0.31 fold) and the number of apoptotic cells. CONCLUSION: NAC inhibits inflammation and apoptosis in the corneas of diabetic rats and HCECs maintained in a high-glucose environment.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3499
Author(s):  
Stefan Reuter ◽  
Dominik Kentrup ◽  
Alexander Grabner ◽  
Gabriele Köhler ◽  
Konrad Buscher ◽  
...  

In the context of transplantation, complement activation is associated with poor prognosis and outcome. While complement activation in antibody-mediated rejection is well-known, less is known about complement activation in acute T cell-mediated rejection (TCMR). There is increasing evidence that complement contributes to the clearance of apoptotic debris and tissue repair. In this regard, we have analysed published human kidney biopsy transcriptome data clearly showing upregulated expression of complement factors in TCMR. To clarify whether and how the complement system is activated early during acute TCMR, experimental syngeneic and allogeneic renal transplantations were performed. Using an allogeneic rat renal transplant model, we also observed upregulation of complement factors in TCMR in contrast to healthy kidneys and isograft controls. While staining for C4d was positive, staining with a C3d antibody showed no C3d deposition. FACS analysis of blood showed the absence of alloantibodies that could have explained the C4d deposition. Gene expression pathway analysis showed upregulation of pro-apoptotic factors in TCMR, and apoptotic endothelial cells were detected by ultrastructural analysis. Monocytes/macrophages were found to bind to and phagocytise these apoptotic cells. Therefore, we conclude that early C4d deposition in TCMR may be relevant to the clearance of apoptotic cells.


Sign in / Sign up

Export Citation Format

Share Document