Hierarchically Nanostructured One-Dimensional Metal Oxide Arrays for Solar Cells

Author(s):  
Jih-Jen Wu ◽  
Chen-Hao Ku ◽  
Chun-Te Wu ◽  
Wen-Pin Liao
Author(s):  
Selina Olthof ◽  
Kai Brinkmann ◽  
Ting Hu ◽  
Klaus Meerholz ◽  
Thoams Riedl

2018 ◽  
Author(s):  
Riva Alkarsifi ◽  
Florent Pourcin ◽  
Pavlo Perkhun ◽  
Mats Fahlman ◽  
Christine Videlot-Ackermann ◽  
...  

Rare Metals ◽  
2021 ◽  
Author(s):  
Jia-Xing Song ◽  
Xin-Xing Yin ◽  
Zai-Fang Li ◽  
Yao-Wen Li

Abstract As a promising photovoltaic technology, perovskite solar cells (pero-SCs) have developed rapidly over the past few years and the highest power conversion efficiency is beyond 25%. Nowadays, the planar structure is universally popular in pero-SCs due to the simple processing technology and low-temperature preparation. Electron transport layer (ETL) is verified to play a vital role in the device performance of planar pero-SCs. Particularly, the metal oxide (MO) ETL with low-cost, superb versatility, and excellent optoelectronic properties has been widely studied. This review mainly focuses on recent developments in the use of low-temperature-processed MO ETLs for planar pero-SCs. The optical and electronic properties of widely used MO materials of TiO2, ZnO, and SnO2, as well as the optimizations of these MO ETLs are briefly introduced. The commonly used methods for depositing MO ETLs are also discussed. Then, the applications of different MO ETLs on pero-SCs are reviewed. Finally, the challenge and future research of MO-based ETLs toward practical application of efficient planar pero-SCs are proposed. Graphical abstract


Author(s):  
Kobra Valadi ◽  
Saideh Gharibi ◽  
Reza Taheri-Ledari ◽  
Seckin Akin ◽  
Ali Maleki ◽  
...  

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Nils Neugebohrn ◽  
Norbert Osterthun ◽  
Maximilian Götz-Köhler ◽  
Kai Gehrke ◽  
Carsten Agert

AbstractOxide/metal/oxide (OMO) layer stacks are used to replace transparent conductive oxides as front contact of thin-film solar cells. These multilayer structures not only reduce the overall thickness of the contact, but can be used for colouring of the cells utilizing interference effects. However, sheet resistance and parasitic absorption, both of which depend heavily on the metal layer, should be further reduced to reach higher efficiencies in the solar cells. In this publication, AgOX wetting layers were applied to OMO electrodes to improve the performance of Cu(In,Ga)Se2 (CIGS) thin-film solar cells. We show that an AgOX wetting layer is an effective measure to increase transmission and conductivity of the multilayer electrode. With the presented approach, we were able to improve the short-circuit current density by 18% from 28.8 to 33.9 mA/cm2 with a metal (Ag) film thickness as low as 6 nm. Our results highlight that OMO electrodes can be an effective replacement for conventional transparent conductive oxides like aluminium-doped zinc oxide on thin-film solar cells.


1978 ◽  
Vol 24 (6) ◽  
pp. 253-256 ◽  
Author(s):  
Krishna P. Pande ◽  
Balbir Singh

2011 ◽  
Vol 115 (14) ◽  
pp. 7104-7113 ◽  
Author(s):  
Jiazang Chen ◽  
Bo Li ◽  
Jianfeng Zheng ◽  
Suping Jia ◽  
Jianghong Zhao ◽  
...  

2015 ◽  
Vol 5 (17) ◽  
pp. n/a-n/a ◽  
Author(s):  
Shunmian Lu ◽  
Xing Guan ◽  
Xinchen Li ◽  
Wei E. I. Sha ◽  
Fengxian Xie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document