wetting layer
Recently Published Documents


TOTAL DOCUMENTS

403
(FIVE YEARS 47)

H-INDEX

33
(FIVE YEARS 5)

2021 ◽  
Vol 2086 (1) ◽  
pp. 012005
Author(s):  
D D Dukhan ◽  
S V Balakirev ◽  
N E Chernenko ◽  
M M Eremenko ◽  
M S Solodovnik

Abstract In this paper, we present the results of kinetic Monte Carlo study of the In/GaAs growth by droplet epitaxy in conditions of non-stationary vapor supersaturation. These conditions allow achievement of the independent control of size and surface density of nanostructures. The material redistribution is realized on the surface when indium deposition is interrupted and leads to a decrease in the critical thickness of droplet formation. An average droplet size increases with increase in interruption time whereas the surface density decreases. However, additional nucleation within the wetting layer can also be observed during the growth interruptions, which makes it possible to increase the surface density of droplets.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1513
Author(s):  
Varsha ◽  
Mohamed Kria ◽  
Jawad El Hamdaoui ◽  
Laura M. Pérez ◽  
Vinod Prasad ◽  
...  

We have studied the parallel and perpendicular electric field effects on the system of SiGe prolate and oblate quantum dots numerically, taking into account the wetting layer and quantum dot size effects. Using the effective-mass approximation in the two bands model, we computationally calculated the extensive variation of dipole matrix (DM) elements, bandgap and non-linear optical properties, including absorption coefficients, refractive index changes, second harmonic generation and third harmonic generation as a function of the electric field, wetting layer size and the size of the quantum dot. The redshift is observed for the non-linear optical properties with the increasing electric field and an increase in wetting layer thickness. The sensitivity to the electric field toward the shape of the quantum dot is also observed. This study is resourceful for all the researchers as it provides a pragmatic model by considering oblate and prolate shaped quantum dots by explaining the optical and electronic properties precisely, as a consequence of the confined stark shift and wetting layer.


2021 ◽  
Vol 129 (15) ◽  
pp. 155310
Author(s):  
F. Goto ◽  
A. Calloni ◽  
G. Albani ◽  
A. Picone ◽  
A. Brambilla ◽  
...  
Keyword(s):  

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Nils Neugebohrn ◽  
Norbert Osterthun ◽  
Maximilian Götz-Köhler ◽  
Kai Gehrke ◽  
Carsten Agert

AbstractOxide/metal/oxide (OMO) layer stacks are used to replace transparent conductive oxides as front contact of thin-film solar cells. These multilayer structures not only reduce the overall thickness of the contact, but can be used for colouring of the cells utilizing interference effects. However, sheet resistance and parasitic absorption, both of which depend heavily on the metal layer, should be further reduced to reach higher efficiencies in the solar cells. In this publication, AgOX wetting layers were applied to OMO electrodes to improve the performance of Cu(In,Ga)Se2 (CIGS) thin-film solar cells. We show that an AgOX wetting layer is an effective measure to increase transmission and conductivity of the multilayer electrode. With the presented approach, we were able to improve the short-circuit current density by 18% from 28.8 to 33.9 mA/cm2 with a metal (Ag) film thickness as low as 6 nm. Our results highlight that OMO electrodes can be an effective replacement for conventional transparent conductive oxides like aluminium-doped zinc oxide on thin-film solar cells.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 443
Author(s):  
Marco Abbarchi ◽  
Takaaki Mano ◽  
Takashi Kuroda ◽  
Akihiro Ohtake ◽  
Kazuaki Sakoda

We provide an extensive and systematic investigation of exciton dynamics in droplet epitaxial quantum dots comparing the cases of (311)A, (001), and (111)A surfaces. Despite a similar s-shell exciton structure common to the three cases, the absence of a wetting layer for (311)A and (111)A samples leads to a larger carrier confinement compared to (001), where a wetting layer is present. This leads to a more pronounced dependence of the binding energies of s-shell excitons on the quantum dot size and to the strong anti-binding character of the positive-charged exciton for smaller quantum dots. In-plane geometrical anisotropies of (311)A and (001) quantum dots lead to a large electron-hole fine interaction (fine structure splitting (FSS) ∼100 μeV), whereas for the three-fold symmetric (111)A counterpart, this figure of merit is reduced by about one order of magnitude. In all these cases, we do not observe any size dependence of the fine structure splitting. Heavy-hole/light-hole mixing is present in all the studied cases, leading to a broad spread of linear polarization anisotropy (from 0 up to about 50%) irrespective of surface orientation (symmetry of the confinement), fine structure splitting, and nanostructure size. These results are important for the further development of ideal single and entangled photon sources based on semiconductor quantum dots.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 256
Author(s):  
Shima Ghaffari ◽  
Philip K. Chan ◽  
Mehrab Mehrvar

The presence of a surface preferably attracting one component of a polymer mixture by the long-range van der Waals surface potential while the mixture undergoes phase separation by spinodal decomposition is called long-range surface-directed spinodal decomposition (SDSD). The morphology achieved under SDSD is an enrichment layer(s) close to the wall surface and a droplet-type structure in the bulk. In the current study of the long-range surface-directed polymerization-induced phase separation, the surface-directed spinodal decomposition of a monomer–solvent mixture undergoing self-condensation polymerization was theoretically simulated. The nonlinear Cahn–Hilliard and Flory–Huggins free energy theories were applied to investigate the phase separation phenomenon. The long-range surface potential led to the formation of a wetting layer on the surface. The thickness of the wetting layer was found proportional to time t*1/5 and surface potential parameter h11/5. A larger diffusion coefficient led to the formation of smaller droplets in the bulk and a thinner depletion layer, while it did not affect the thickness of the enrichment layer close to the wall. A temperature gradient imposed in the same direction of long-range surface potential led to the formation of a stripe morphology near the wall, while imposing it in the opposite direction of surface potential led to the formation of large particles at the high-temperature side, the opposite side of the interacting wall.


Author(s):  
Marco Abbarchi ◽  
takaaki mano ◽  
takashi kuroda ◽  
kazuaki sakoda

We provide an extensive and systematic investigation of exciton dynamics in droplet epitaxial quantum dots comparing the cases of (311)A, (001) and (111)A surfaces. In spite of a similar s-shell exciton structure common to the three cases, the absence of a wetting layer for (311)A and (111)A samples leads to a larger carrier confinement with respect to (001), where a wetting layer is present. Moreover, this leads to a more pronounced dependence of the binding energies of s-shell excitons on the quantum dot size and to a strong anti-binding character of the positive charged exciton for smaller quantum dots. In-plane geometrical anisotropies of (311)A and (001) quantum dots lead to a large electron-hole fine interaction (fine structure splitting, FSS ~ 100 ueV) whereas for the three-fold symmetric (111)A counterpart this figure of merit is reduced of about one order of magnitude. In all these cases we do not observe any size dependence of the fine interactions. Heavy-hole/light-hole mixing is present in all the studied cases leading to a broad spread of linear polarization anisotropy (from 0 up to about 50%) irrespective of surface orientation (symmetry of the confinement), fine interactions and nanostructure size. These results are important for the further development of ideal single and entangled photon sources based on semiconductor quantum dots.


Sign in / Sign up

Export Citation Format

Share Document