THE CELL BIOLOGY OF FAT BODY DEVELOPMENT

Author(s):  
Michael Locke
Development ◽  
1998 ◽  
Vol 125 (4) ◽  
pp. 713-723 ◽  
Author(s):  
V. Riechmann ◽  
K.P. Rehorn ◽  
R. Reuter ◽  
M. Leptin

The somatic muscles, the heart, the fat body, the somatic part of the gonad and most of the visceral muscles are derived from a series of segmentally repeated primordia in the Drosophila mesoderm. This work describes the early development of the fat body and its relationship to the gonadal mesoderm, as well as the genetic control of the development of these tissues. Segmentation and dorsoventral patterning genes define three regions in each parasegment in which fat body precursors can develop. Fat body progenitors in these regions are specified by different genetic pathways. Two regions require engrailed and hedgehog for their development while the third is controlled by wingless. decapentaplegic and one or more unknown genes determine the dorsoventral extent of these regions. In each of parasegments 10–12 one of these regions generates somatic gonadal precursors instead of fat body. The balance between fat body and somatic gonadal fate in these serially homologous cell clusters is controlled by at least five genes. We suggest a model in which tinman, engrailed and wingless are necessary to permit somatic gonadal develoment, while serpent counteracts the effects of these genes and promotes fat body development. The homeotic gene abdominalA limits the region of serpent activity by interfering in a mutually repressive feed back loop between gonadal and fat body development.


Development ◽  
1998 ◽  
Vol 125 (5) ◽  
pp. 837-844 ◽  
Author(s):  
L.A. Moore ◽  
H.T. Broihier ◽  
M. Van Doren ◽  
R. Lehmann

During gastrulation, the Drosophila mesoderm invaginates and forms a single cell layer in close juxtaposition to the overlying ectoderm. Subsequently, particular cell types within the mesoderm are specified along the anteroposterior and dorsoventral axes. The exact developmental pathways that guide the specification of different cell types within the mesoderm are not well understood. We have analyzed the developmental relationship between two mesodermal tissues in the Drosophila embryo, the gonadal mesoderm and the fat body. Both tissues arise from lateral mesoderm within the eve domain. Whereas in the eve domain of parasegments 10–12 gonadal mesoderm develops from dorsolateral mesoderm and fat body from ventrolateral mesoderm, in parasegments 4–9 only fat body is specified. Our results demonstrate that the cell fate decision between gonadal mesoderm and fat body identity within dorsolateral mesoderm along the anteroposterior axis is determined by the combined actions of genes including abdA, AbdB and srp; while srp promotes fat body development, abdA allows gonadal mesoderm to develop by repressing srp function. Furthermore, we present evidence from genetic analysis suggesting that, before stage 10 of embryogenesis, gonadal mesoderm and the fat body have not yet been specified as different cell types, but exist as a common pool of precursor cells requiring the functions of the tin, zfh-1 and cli genes for their development.


Author(s):  
Ying Liu ◽  
Hanhan Liu ◽  
Shumin Liu ◽  
Sheng Wang ◽  
Rong-Jing Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document