dorsoventral patterning
Recently Published Documents


TOTAL DOCUMENTS

241
(FIVE YEARS 19)

H-INDEX

40
(FIVE YEARS 2)

Author(s):  
Yifang Yan ◽  
Qiang Wang

One of the most significant events during early embryonic development is the establishment of a basic embryonic body plan, which is defined by anteroposterior, dorsoventral (DV), and left-right axes. It is well-known that the morphogen gradient created by BMP signaling activity is crucial for DV axis patterning across a diverse set of vertebrates. The regulation of BMP signaling during DV patterning has been strongly conserved across evolution. This is a remarkable regulatory and evolutionary feat, as the BMP gradient has been maintained despite the tremendous variation in embryonic size and shape across species. Interestingly, the embryonic DV axis exhibits robust stability, even in face of variations in BMP signaling. Multiple lines of genetic, molecular, and embryological evidence have suggested that numerous BMP signaling components and their attendant regulators act in concert to shape the developing DV axis. In this review, we summarize the current knowledge of the function and regulation of BMP signaling in DV patterning. Throughout, we focus specifically on popular model animals, such as Xenopus and zebrafish, highlighting the similarities and differences of the regulatory networks between species. We also review recent advances regarding the molecular nature of DV patterning, including the initiation of the DV axis, the formation of the BMP gradient, and the regulatory molecular mechanisms behind BMP signaling during the establishment of the DV axis. Collectively, this review will help clarify our current understanding of the molecular nature of DV axis formation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Thomas P. Lozito ◽  
Ricardo Londono ◽  
Aaron X. Sun ◽  
Megan L. Hudnall

AbstractLizards regenerate amputated tails but fail to recapitulate the dorsoventral patterning achieved during embryonic development. Regenerated lizard tails form ependymal tubes (ETs) that, like embryonic tail neural tubes (NTs), induce cartilage differentiation in surrounding cells via sonic hedgehog (Shh) signaling. However, adult ETs lack characteristically roof plate-associated structures and express Shh throughout their circumferences, resulting in the formation of unpatterned cartilage tubes. Both NTs and ETs contain neural stem cells (NSCs), but only embryonic NSC populations differentiate into roof plate identities when protected from endogenous Hedgehog signaling. NSCs were isolated from parthenogenetic lizard embryos, rendered unresponsive to Hedgehog signaling via CRISPR/Cas9 gene knockout of smoothened (Smo), and implanted back into clonally-identical adults to regulate tail regeneration. Here we report that Smo knockout embryonic NSCs oppose cartilage formation when engrafted to adult ETs, representing an important milestone in the creation of regenerated lizard tails with dorsoventrally patterned skeletal tissues.


2021 ◽  
Author(s):  
Ruixun Wang ◽  
Linda Karadas ◽  
Philipp Schiffer ◽  
Matthias Pechmann

Cell migration is a fundamental component during the development of most multicellular organisms. In spiders, the collective migration of a signalling centre, known as the cumulus, is required to set the dorsoventral body axis of the embryo. Here, we show that FGF signalling plays an important role during cumulus migration in the spider Parasteatoda tepidariorum. Spider embryos with reduced FGF signalling lack cumulus migration and display dorsoventral patterning defects. Our study reveals that cumulus expression of several FGF signalling components is regulated by the transcription factor Ets4. In conjunction with a previous study, we show that the expression of fgf8 in the germ-disc is regulated via the Hedgehog signalling pathway. We also demonstrate that FGF signalling influences the BMP signalling pathway activity in the region around cumulus cells. Finally, we show that FGF signalling might also influence cumulus migration in basally branching spiders and we propose a hypothetical model in which fgf8 acts a chemo-attractant to guide cumulus cells towards the future dorsal pole of the spider embryo.


2021 ◽  
Author(s):  
Hanjun Lee ◽  
Bruce Blumberg ◽  
Michael S. Lawrence ◽  
Toshi Shioda

AbstractIdentification of dynamic changes in chromatin conformation is a fundamental task in genetics. In 2020, Galan et al.1 presented CHESS (Comparison of Hi-C Experiments using Structural Similarity), a novel computational algorithm designed for systematic identification of structural differences in chromatin-contact maps. Using CHESS, the same group recently reported that chromatin organization is largely maintained across tissues during dorsoventral patterning of fruit fly embryos despite tissue-specific chromatin states and gene expression2. However, here we show that the primary outputs of CHESS–namely, the structural similarity index (SSIM) profiles–are nearly identical regardless of the input matrices, even when query and reference reads were shuffled to destroy any significant differences. This issue stems from the dominance of the regional counting noise arising from stochastic sampling in chromatin-contact maps, reflecting a fundamentally incorrect assumption of the CHESS algorithm. Therefore, biological interpretation of SSIM profiles generated by CHESS requires considerable caution.


2021 ◽  
Vol 1 (6) ◽  
Author(s):  
Subham Dasgupta ◽  
Vanessa Cheng ◽  
David C. Volz

Development ◽  
2021 ◽  
Author(s):  
Feng Zhao ◽  
Jan Traas

In many species, leaves are initiated at the flanks of shoot meristems. Usually, subsequent growth mainly occurs in the plane of the leaf blade, which leads to the formation of a bifacial leaf with dorso-ventral identities. In a classical set of surgical experiments in potato meristems, Sussex provided evidence that dorsoventrality depends on a signal emanating from the meristem centre. Although these results could be reproduced in tomato, this concept has been debated. We revisited these experiments in Arabidopsis where a range of markers are available to target the precise site of ablation. Using specific markers for organ founder cells and dorsoventral identity, we were unable to perturb the polarity of leaves and sepals long before organ outgrowth. While results in Solanaceae suggested that dorsoventral patterning was unstable during early development, we find that in Arabidopsis the local information contained within and around the primordium is able to withstand major invasive perturbations, long before polarity is fully established.


Author(s):  
Christine Hirschberger ◽  
Victoria A Sleight ◽  
Katharine E Criswell ◽  
Stephen J Clark ◽  
J Andrew Gillis

Abstract The origin of the jaw is a long-standing problem in vertebrate evolutionary biology. Classical hypotheses of serial homology propose that the upper and lower jaw evolved through modifications of dorsal and ventral gill arch skeletal elements, respectively. If the jaw and gill arches are derived members of a primitive branchial series, we predict that they would share common developmental patterning mechanisms. Using candidate and RNAseq/differential gene expression analyses, we find broad conservation of dorsoventral patterning mechanisms within the developing mandibular, hyoid and gill arches of a cartilaginous fish, the skate (Leucoraja erinacea). Shared features include expression of genes encoding members of the ventralising BMP and endothelin signalling pathways and their effectors, the joint markers nkx3.2 and gdf5 and pro-chondrogenic transcription factor barx1, and the dorsal territory marker pou3f3. Additionally, we find that mesenchymal expression of eya1/six1 is an ancestral feature of the mandibular arch of jawed vertebrates, while differences in notch signalling distinguish the mandibular and gill arches in skate. Comparative transcriptomic analyses of mandibular and gill arch tissues reveal additional genes differentially expressed along the dorsoventral axis of the pharyngeal arches, including scamp5 as a novel marker of the dorsal mandibular arch, as well as distinct transcriptional features of mandibular and gill arch muscle progenitors and developing gill buds. Taken together, our findings reveal conserved patterning mechanisms in the pharyngeal arches of jawed vertebrates, consistent with serial homology of their skeletal derivatives, as well as unique transcriptional features that may underpin distinct jaw and gill arch morphologies.


2021 ◽  
Author(s):  
Keiji Itoh ◽  
Olga Ossipova ◽  
Sergei Y. Sokol

SummaryDorsoventral patterning of a vertebrate embryo critically depends on the activity of Smad1 that mediates signaling by several BMP proteins, anti-dorsalizing morphogenetic protein (Admp), and their antagonists. Pinhead (Pnhd), a cystine-knot-containing secreted protein, is expressed in the ventrolateral marginal zone duringXenopusgastrulation, however, its molecular targets and signaling mechanisms have not been fully elucidated. An unbiased mass spectrometry-based screen of the gastrulasecretomeidentified Admp as a primary Pnhd-associated protein. We show that Pnhd binds Admp and inhibits its ventralizing activity by reducing Smad1 phosphorylation and suppressing its transcriptional targets. By contrast, Pnhd did not affect the signaling activity of BMP4. Importantly, the Admp gain-of-function phenotype and phospho-Smad1 levels have been enhanced after Pnhd depletion. Furthermore, Pnhd strongly synergized with Chordin and a truncated BMP4 receptor in the induction of notochord markers in ectoderm cells, and Pnhd-depleted embryos displayed notochord defects. Our findings suggest that Pnhd binds and inactivates Admp to promote notochord development. We propose that the interaction between Admp and Pnhd refines Smad1 activity gradients during vertebrate gastrulation.


Author(s):  
Elizabeth Ing-Simmons ◽  
Roshan Vaid ◽  
Xin Yang Bing ◽  
Michael Levine ◽  
Mattias Mannervik ◽  
...  

AbstractThe relationship between chromatin organization and gene regulation remains unclear. While disruption of chromatin domains and domain boundaries can lead to misexpression of developmental genes, acute depletion of regulators of genome organization has a relatively small effect on gene expression. It is therefore uncertain whether gene expression and chromatin state drive chromatin organization or whether changes in chromatin organization facilitate cell-type-specific activation of gene expression. Here, using the dorsoventral patterning of the Drosophila melanogaster embryo as a model system, we provide evidence for the independence of chromatin organization and dorsoventral gene expression. We define tissue-specific enhancers and link them to expression patterns using single-cell RNA-seq. Surprisingly, despite tissue-specific chromatin states and gene expression, chromatin organization is largely maintained across tissues. Our results indicate that tissue-specific chromatin conformation is not necessary for tissue-specific gene expression but rather acts as a scaffold facilitating gene expression when enhancers become active.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Matthias Pechmann ◽  
Nathan James Kenny ◽  
Laura Pott ◽  
Peter Heger ◽  
Yen-Ta Chen ◽  
...  

Dorsoventral pattering relies on Toll and BMP signalling in all insects studied so far, with variations in the relative contributions of both pathways. Drosophila and the beetle Tribolium share extensive dependence on Toll, while representatives of more distantly related lineages like the wasp Nasonia and bug Oncopeltus rely more strongly on BMP signalling. Here, we show that in the cricket Gryllus bimaculatus, an evolutionarily distant outgroup, Toll has, like in Drosophila, a direct patterning role for the ventral half of the embryo. In addition, Toll polarizes BMP signalling, although this does not involve the conserved BMP inhibitor Sog/Chordin. Finally, Toll activation relies on ovarian patterning mechanisms with striking similarity to Drosophila. Our data suggest two surprising hypotheses: 1) that Toll's patterning function in Gryllus and Drosophila is the result of convergent evolution or 2) a Drosophila-like system arose early in insect evolution, and was extensively altered in multiple independent lineages.


Sign in / Sign up

Export Citation Format

Share Document