A BRIEF SUMMARY OF OUR PRESENT DAY UNDERSTANDING OF THE EFFECT OF VOLATILES AND PARTIAL MELT ON THE MECHANICAL PROPERTIES OF THE UPPER MANTLE

1977 ◽  
pp. 3-23 ◽  
Author(s):  
C. GOETZE
1981 ◽  
Vol 19 (3) ◽  
pp. 394 ◽  
Author(s):  
T. J. Shankland ◽  
R. J. O’Connell ◽  
H. S. Waff
Keyword(s):  

2020 ◽  
Vol 117 (31) ◽  
pp. 18285-18291
Author(s):  
Man Xu ◽  
Zhicheng Jing ◽  
Suraj K. Bajgain ◽  
Mainak Mookherjee ◽  
James A. Van Orman ◽  
...  

Deeply subducted carbonates likely cause low-degree melting of the upper mantle and thus play an important role in the deep carbon cycle. However, direct seismic detection of carbonate-induced partial melts in the Earth’s interior is hindered by our poor knowledge on the elastic properties of carbonate melts. Here we report the first experimentally determined sound velocity and density data on dolomite melt up to 5.9 GPa and 2046 K by in-situ ultrasonic and sink-float techniques, respectively, as well as first-principles molecular dynamics simulations of dolomite melt up to 16 GPa and 3000 K. Using our new elasticity data, the calculated VP/VSratio of the deep upper mantle (∼180–330 km) with a small amount of carbonate-rich melt provides a natural explanation for the elevated VP/VSratio of the upper mantle from global seismic observations, supporting the pervasive presence of a low-degree carbonate-rich partial melt (∼0.05%) that is consistent with the volatile-induced or redox-regulated initial melting in the upper mantle as argued by petrologic studies. This carbonate-rich partial melt region implies a global average carbon (C) concentration of 80–140 ppm. by weight in the deep upper mantle source region, consistent with the mantle carbon content determined from geochemical studies.


Science ◽  
2007 ◽  
Vol 318 (5850) ◽  
pp. 623-626 ◽  
Author(s):  
Nicholas Schmerr ◽  
Edward J. Garnero

Using high-resolution stacks of precursors to the seismic phase SS, we investigated seismic discontinuities associated with mineralogical phase changes approximately 410 and 660 kilometers (km) deep within Earth beneath South America and the surrounding oceans. Detailed maps of phase boundary topography revealed deep 410- and 660-km discontinuities in the down-dip direction of subduction, inconsistent with purely isochemical olivine phase transformation in response to lowered temperatures. Mechanisms invoking chemical heterogeneity within the mantle transition zone were explored to explain this feature. In some regions, multiple reflections from the discontinuities were detected, consistent with partial melt near 410-km depth and/or additional phase changes near 660-km depth. Thus, the origin of upper mantle heterogeneity has both chemical and thermal contributions and is associated with deeply rooted tectonic processes.


2013 ◽  
Vol 683 ◽  
pp. 828-831
Author(s):  
Yan Xu ◽  
Jun Xu ◽  
Wen Hu Zhang

Recent laboratory experiments demonstrate that electrical conductivity of upper mantle (UM) minerals is greatly increased by small amounts of water or by partial melt. Determination of deep conductivity using electromagnetic (EM) methods can thus provide constraints on the presence of volatiles and melting processes in UM. Probing conductivity at UM depths requires EM data with periods of a few to one cycle per day. This is a challenging period range for EM studies due to the spatially complex ionospheric source that dominates at these periods. The idea of exploiting tidal signals for EM studies of the Earth is not new, but so far it was used only for interpretation of inland and transoceanic electric field data due to M2. Emphasis in this work is made on a discussion of sea bottom magnetic field of the same origin.


Sign in / Sign up

Export Citation Format

Share Document