baltic shield
Recently Published Documents


TOTAL DOCUMENTS

402
(FIVE YEARS 27)

H-INDEX

50
(FIVE YEARS 2)

Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1410
Author(s):  
Pavel A. Serov

This paper continues the Sm-Nd isotope geochronological research carried out at the two largest Paleoproterozoic ore complexes of the northeastern Baltic Shield, i.e., the Cu-Ni-Cr Monchegorsk and the Pt-Pd Fedorovo-Pansky intrusions. These economically significant deposits are examples of layered complexes in the northeastern part of the Fennoscandian Shield. Understanding the stages of their formation and transformation helps in the reconstruction of the long-term evolution of ore-forming systems. This knowledge is necessary for subsequent critical metallogenic and geodynamic conclusions. We applied the Sm-Nd method of comprehensive age determination to define the main age ranges of intrusion. Syngenetic ore genesis occurred 2.53–2.85 Ga; hydrothermal metasomatic ore formation took place 2.70 Ga; and the injection of additional magma batches occurred 2.44–2.50 Ga. The rock transformation and redeposited ore formation at 2.0–1.9 Ga corresponded to the beginning of the Svecofennian events, widely presented on the Fennoscandian Shield. According to geochronological and Nd-Sr isotope data, rocks of the Monchegorsk and the Fedorovo-Pansky complexes seemed to have an anomalous mantle source in common with Paleoproterozoic layered intrusions of the Fennoscandian Shield (enriched with lithophile elements, εNd values vary from −3.0 to +2.5 and ISr 0.702–0.705). The data obtained comply with the known isotope-geochemical and geochronological characteristics of ore-bearing layered intrusions in the northeastern Baltic Shield. An interaction model of parental melts of the Fennoscandian layered intrusions and crustal matter shows a small level of contamination within the usual range of 5–10%. However, the margins of the Monchetundra massif indicate a much higher level of crustal contamination caused by active interaction of parental magmas and host rock.


2021 ◽  
Vol 57 (6) ◽  
pp. 714-729
Author(s):  
E. S. Gorbatov ◽  
S. F. Kolesnikov ◽  
A. M. Korzhenkov ◽  
H. A. Vardanyan
Keyword(s):  

2021 ◽  
Vol 57 (5) ◽  
pp. 605-613
Author(s):  
A. G. Goev ◽  
I. A. Sanina ◽  
S. I. Oreshin ◽  
R. A. Reznichenko ◽  
S. A. Tarasov ◽  
...  

2021 ◽  
Author(s):  
Metin Kahraman ◽  
Hans Thybo ◽  
Irina Artemieva ◽  
Alexey Shulgin ◽  
Alireza Malehmir ◽  
...  

<p>The Baltic Shield is located in the northern part of Europe, which formed by amalgamation of a series of terranes and microcontinents during the Archean to the Paleoproterozoic, followed by significant modification in Neoproterozoic to Paleozoic time. The Baltic Shield includes an up-to 2500 m high mountain range, the Scandes , along the western North Atlantic coast, despite being a stable craton located far from any active plate boundary.</p><p>We study a crustal scale seismic profile experiment in northern Scandinavia between 63<sup>o</sup>N and 71<sup>o</sup>N. Our Silverroad seismic profile extends perpendicular to the coastline around Lofoten and extends ~300km in a northwest direction across the shelf into the Atlantic Ocean and ~300km in a southeastern direction across the Baltic Shield. The seismic data were acquired with 5 explosive sources and 270 receivers onshore; 16 ocean bottom seismometers and air gun shooting from the vessel Hakon Mosby were used to collect both offshore and onshore.</p><p>We present the results from raytracing modelling of the seismic velocity structure along the profile. The outputs of this experiment will help to solve high onshore topography and anomalous and heterogeneous bathymetry of the continental lithosphere around the North Atlantic Ocean. The results show crustal thinning from the shield onto the continental shelf and further into the oceanic part. Of particular interest is the velocity below the high topography of the Scandes, which will be discussed in relation to isostatic equilibrium along the profile.</p>


2021 ◽  
Author(s):  
Andrey Goev

<p>The Kola region of the Russian Arctic is located in the northeast of the Baltic Shield and is widely known for its unique geology in regards to the presence of massive Paleozoic intrusions. Multidisciplinary researches have been carried out to provide a comprehensive reconstruction of Khibiny and Lovozero plutons’ formation and their structure models The main source of geochronological data comes from isotope analysis of the arrays’ rocks. The amount of research focuses on the deep structure beneath the Khibiny pluton is scarce. To investigate velocity structure of the investigated region we used receiver function technique. Essence of the method is to analyze P-S (PRF) and S-P (SRF) converted waves form seismic boundaries along with their multiples. For the given research we used seismograms of the teleseismic events recorded by the Apatity (APA) and Lovozero (LVZ) broadband seismic stations since 2000. We selected 220 and 232 individual PRF;147 and 122 individual SRF for LVZ and APA station respectively. As both LVZ and APA are located relatively close to each other, we combined all 452 PRF to get a robust estimation of delay times of P410s and P660s phases. Our estimations of P410s and P660s phases are 43.6 and 67.6 sec respectively. Delay time between these phases is 24 sec that is close to “standard” according to the IASP91 model. The individual times of each phase are slightly less than predicted by IASP91 (by 0.4 sec) and could indicate an increase of velocities in the upper mantle, but it is not unusual for cratonic regions. Joint inversion of PRF and SRF was used to restore velocity sections for the depth up to 300 km. All models have shown a gradient increase in velocities in the earth's crust and sharp crust-mantle boundary at depth of 40 ± 1 km with a velocity jump from 3.9 to 4.4 km/s. The most prominent feature of the upper mantle structure is the presence of the low-velocity zone at a depth from 90 to 140 km. One of the possible explanation of this discontinuity could be the presence of deep fluids and the high porosity of this zone. This study was partially supported by the RFBR grant 18-05-70082 and the SRW theme No. АААА-А19-119022090015-6.</p>


2021 ◽  
Author(s):  
Hans Thybo ◽  
Nevra Bulut ◽  
Michael Grund ◽  
Alexandra Mauerberger ◽  
Anna Makushkina ◽  
...  

<p>The Baltic Shield is located in northern Europe. It was formed by amalgamation of a series of terranes and microcontinents during the Archean to the Paleoproterozoic, followed by significant modification in Neoproterozoic to Paleozoic time. The Baltic Shield includes a high mountain range, the Scandes, along its western North Atlantic coast, despite being a stable craton located far from any active plate boundary.</p> <p>The ScanArray international collaborative program has acquired broad band seismological data at 192 locations in the Baltic Shield during the period between 2012 and 2017. The main objective of the program is to provide seismological constraints on the structure of the lithospheric crust and mantle as well as the sublithospheric upper mantle. The new information will be applied to studies of how the lithospheric and deep structure affects observed fast topographic change and geological-tectonic evolution of the region. The recordings are of very high quality and are used for analysis by suite of methods, including P- and S-wave receiver functions for the crust and upper mantle, surface wave and ambient noise inversion for seismic velocity, body wave P- and S- wave tomography for upper mantle velocity structure, and shear-wave splitting measurements for obtaining bulk anisotropy of the upper and lower mantle. Here we provide a short overview of the data acquisition and initial analysis of the new data with focus on parameters that constrain the fast topographic change in the Scandes.</p> <p> </p>


LITOSFERA ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 5-22
Author(s):  
E. N. Terekhov ◽  
S. Yu. Kolodyazhny ◽  
A. S. Baluev ◽  
O. I. Okina

Research subject. A geochemical study of Cambrian-Ordovician deposits was carried out within the area of the Duderhof dislocations of the platform cover of the southern frame of the Baltic shield. Materials and methods. The ICP-MS method was used to study 14 samples of sandstones, limestone, phosphorites and black shales, which comprise both weakly dislocated stratified formations (stratified horizons) and strongly deformed formations, as well as secant dome-like and dike-like bodies. Results. Geochemical studies showed that, in the zones of tectonic disturbances, lower Paleozoic deposits are characterized by high concentrations of a number of trace elements, significantly exceeding the Clark values for sedimentary rocks. This applies to such chemical elements, as Be, Sc, V, Co, Ni, Cu, Mo, Pb, Th and U. At the same time, the concentrations of V and U are higher than those in the developed fields of Estonia and Sweden. An analysis of the cambriansands of the sablin formation showed that the eastern (Archean) part of the Baltic shield could not have been the source of food for their formation. The presence of leucoxene in the sands of the Sablinsky formation, a mineral formed by ilmenite under the influence of high temperatures, and the presence of mechanically unstable minerals in dike-like formations, indicate the influence of deep fluids on the sedimentary cover, whose flows moved along fault zones and carried the above-mentioned chemical elements to the near-surface layers of the earth’s crust. All this points to the endogenous rather than exogenous (glacial) nature of secondary structural-material transformations in the area of the Duderhof dislocations, as well as their genetic relationship with deformations in the Baltic-Mezen shear zone.


2021 ◽  
Vol 31 ◽  
pp. 354-358
Author(s):  
A. Saksa ◽  

Vyborg is a town unique in the entire region of Scandinavia and Baltic littoral, as well as in North- Western Russia, since it was founded and built on the outcrop of the Baltic Shield with its uneven surface. The founda- tion of the town was related with the construction of the Vyborg Castle in 1293 and the endeavour of the Swedes to strengthen themselves in this territory won from Novgorod. The history of the development of the urban architecture presented in this paper, as well as its peculiarities and the techniques employed by the builders, will interest all those who are concerned with cities of the region of the Baltic Sea and North-Western Russia.


Sign in / Sign up

Export Citation Format

Share Document