Anti-(T,G)-A–L Idiotypes: Initial Studies of Genetic Control and Cellular Expression

Author(s):  
SETH H. PINCUS ◽  
ALFRED SINGER ◽  
RICHARD J. HODES ◽  
HOWARD B. DICKLER
1986 ◽  
Vol 10 (3) ◽  
pp. 255-269 ◽  
Author(s):  
Rosella Mollicone ◽  
David R. Davies ◽  
Beryl Evans ◽  
Anne Marie Dalix ◽  
Rafael Oriol

Parasitology ◽  
1996 ◽  
Vol 113 (S1) ◽  
pp. S97-S117 ◽  
Author(s):  
R. E. Davis ◽  
A. O. W. Stretton

SUMMARYAnalysis of the electrical properties of neurons in the motornervous system of Ascaris suum suggests that it is largely an analogue system. The motorneurons do not conduct action potentials and they release transmitter tonically at their normal resting potential; transmitter release is increased or decreased as a continuous function of membrane potential. Despite extensive physiological descriptions of the electrical properties of the neurons and their synapses, as well as morphological descriptions of the synaptic circuitry of the system, the predicted activities of the neurons in the circuit differ from those observed by direct recording in semi-intact behaving animals. We conclude that the description of the circuit is incomplete. There are several possibilities for the missing elements, including chemical, proprioceptive, and additional neuronal components. Recently, attention has been focussed most heavily on the intercellular chemical signalling systems; in addition to those mediated by classical neurotransmitters, a surprisingly complex array of neuropeptides has been identified. One family of these peptides, the AF peptides, has been analyzed in detail. It comprises at least 20 peptides, and they fall into sequence-related subfamilies. One of these subfamilies, containing 6 peptides, is encoded by a single transcript, suggesting that the AF peptides are under multiple genetic control. All AF peptides tested have potent activity on the motornervous system and or on muscle. There are multiple physiological activities, and cellular localization studies show multiple patterns of cellular expression. Studies on Panagrellus and Caenorhabditis emphasize the diversity of this family and its genetic control.


Author(s):  
Yasushi P. Kato ◽  
Michael G. Dunn ◽  
Frederick H. Silver ◽  
Arthur J. Wasserman

Collagenous biomaterials have been used for growing cells in vitro as well as for augmentation and replacement of hard and soft tissues. The substratum used for culturing cells is implicated in the modulation of phenotypic cellular expression, cellular orientation and adhesion. Collagen may have a strong influence on these cellular parameters when used as a substrate in vitro. Clinically, collagen has many applications to wound healing including, skin and bone substitution, tendon, ligament, and nerve replacement. In this report we demonstrate two uses of collagen. First as a fiber to support fibroblast growth in vitro, and second as a demineralized bone/collagen sponge for radial bone defect repair in vivo.For the in vitro study, collagen fibers were prepared as described previously. Primary rat tendon fibroblasts (1° RTF) were isolated and cultured for 5 days on 1 X 15 mm sterile cover slips. Six to seven collagen fibers, were glued parallel to each other onto a circular cover slip (D=18mm) and the 1 X 15mm cover slip populated with 1° RTF was placed at the center perpendicular to the collagen fibers. Fibroblast migration from the 1 x 15mm cover slip onto and along the collagen fibers was measured daily using a phase contrast microscope (Olympus CK-2) with a calibrated eyepiece. Migratory rates for fibroblasts were determined from 36 fibers over 4 days.


2010 ◽  
Vol 30 (4) ◽  
pp. 327-344 ◽  
Author(s):  
Harry W. Schroeder, Jr. ◽  
Michael Zemlin ◽  
Mohamed Khass ◽  
Huan H. Nguyen ◽  
Robert L. Schelonka

Diabetes ◽  
1989 ◽  
Vol 38 (11) ◽  
pp. 1446-1455 ◽  
Author(s):  
M. Prochazka ◽  
D. V. Serreze ◽  
S. M. Worthen ◽  
E. H. Leiter
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document