cell growth and proliferation
Recently Published Documents


TOTAL DOCUMENTS

335
(FIVE YEARS 133)

H-INDEX

43
(FIVE YEARS 8)

Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4326
Author(s):  
Ching-Cheng Huang ◽  
Ying-Ju Chen ◽  
Hsia-Wei Liu

Nano-bioscaffolds obtained from decellularized tissues have been employed in several medical applications. Nano-bioscaffolds could provide structural support for cell attachment and a suitable environment with sufficient porosity for cell growth and proliferation. In this study, a new combined method constitutes a decellularization protocol to remove the tissue and cellular molecules from porcine dermis for preparation of nano-bioscaffolds with fibrous extracellular matrix via pre- and post-treatment of supercritical fluids. The supercritical fluids-assisted nano-bioscaffolds were characterized by peptide identification, infrared spectrum of absorption, morphology, histological observations, DNA quantification, and hemocompatibility. Further, the resulting nano-bioscaffolds could be employed to obtain new cross-linked composite nano-bioscaffold containing collagen and acellular matrix.


2021 ◽  
Vol 12 ◽  
Author(s):  
Huifen Xiang ◽  
Chunyan Wang ◽  
Hong Pan ◽  
Qian Hu ◽  
Ruyi Wang ◽  
...  

Recurrent pregnancy loss (RPL) is a common reproductive problem affecting around 5% of couples worldwide. At present, about half of RPL cases remained unexplained. Previous studies have suggested an important role for genetic determinants in the etiology of RPL. Here, we performed whole-exome sequencing (WES) analysis on 100 unrelated Han Chinese women with a history of two or more spontaneous abortions. We identified 6736 rare deleterious nonsynonymous variants across all patients. To focus on possible candidate genes, we generated a list of 95 highly relevant genes that were functionally associated with miscarriage according to human and mouse model studies, and found 35 heterozygous variants of 28 RPL-associated genes in 32 patients. Four genes (FOXA2, FGA, F13A1, and KHDC3L) were identified as being strong candidates. The FOXA2 nonsense variant was for the first time reported here in women with RPL. FOXA2 knockdown in HEK-293T cells significantly diminished the mRNA and protein expression levels of LIF, a pivotal factor for maternal receptivity and blastocyst implantation. The other genes, with 29 variants, were involved in angiogenesis, the immune response and inflammation, cell growth and proliferation, which are functionally important processes for implantation and pregnancy. Our study identified several potential causal genetic variants in women with RPL by WES, highlighting the important role of genes controlling coagulation, confirming the pathogenic role of KHDC3L and identifying FOXA2 as a newly identified causal gene in women with RPL.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Joanna Szydzik ◽  
Dan E. Lind ◽  
Badrul Arefin ◽  
Yeshwant Kurhe ◽  
Ganesh Umapathy ◽  
...  

AbstractHigh-risk neuroblastoma (NB) often involves MYCN amplification as well as mutations in ALK. Currently, high-risk NB presents significant clinical challenges, and additional therapeutic options are needed. Oncogenes like MYCN and ALK result in increased replication stress in cancer cells, offering therapeutically exploitable options. We have pursued phosphoproteomic analyses highlighting ATR activity in ALK-driven NB cells, identifying the BAY1895344 ATR inhibitor as a potent inhibitor of NB cell growth and proliferation. Using RNA-Seq, proteomics and phosphoproteomics we characterize NB cell and tumour responses to ATR inhibition, identifying key components of the DNA damage response as ATR targets in NB cells. ATR inhibition also produces robust responses in mouse models. Remarkably, a 2-week combined ATR/ALK inhibition protocol leads to complete tumor regression in two independent genetically modified mouse NB models. These results suggest that NB patients, particularly in high-risk groups with oncogene-induced replication stress, may benefit from ATR inhibition as therapeutic intervention.


2021 ◽  
Vol 13 (4) ◽  
pp. 555-568
Author(s):  
Emanuele Bartolini

Epileptic encephalopathies often have a genetic etiology. The epileptic activity itself exerts a direct detrimental effect on neurodevelopment, which may add to the cognitive impairment induced by the underlying mutation (“developmental and epileptic encephalopathy”). The focus of this review is on inherited syndromes. The phenotypes of genetic disorders affecting ion channels, metabolic signalling, membrane trafficking and exocytosis, cell adhesion, cell growth and proliferation are discussed. Red flags suggesting family of genes or even specific genes are highlighted. The knowledge of the phenotypical spectrum can indeed prompt the clinician to suspect specific etiologies, expediting the diagnosis.


2021 ◽  
Vol 22 (11) ◽  
pp. 3633-3640
Author(s):  
Pongsakorn Martviset ◽  
Luxsana Panrit ◽  
Pathanin Chantree ◽  
Phunuch Muhamad ◽  
Kesara Na-Bangchang

2021 ◽  
Author(s):  
Ho-Joon Lee ◽  
Fangzhou Shen ◽  
Alec Eames ◽  
Mark P Jedrychowski ◽  
Sriram Chandrasekaran

Cell cycle is a fundamental process for cell growth and proliferation, and its dysregulation leads to many diseases. How metabolic networks are regulated and rewired during the cell cycle is unknown. Here we apply a dynamic genome-scale metabolic modeling framework (DFA) to simulate a cell cycle of cytokine-activated murine pro-B cells. Phase-specific reaction activity predicted by DFA using time-course metabolomics were validated using matched time-course proteomics and phospho-proteomics data. Our model correctly predicted changes in methionine metabolism at the G1/S transition and the activation of lysine metabolism, nucleotides synthesis, fatty acid elongation and heme biosynthesis at the critical G0/G1 transition into cell growth and proliferation. Metabolic fluxes predicted from proteomics and phosphoproteomics constrained metabolic models were highly consistent with DFA fluxes and revealed that most reaction fluxes are regulated indirectly. Our model can help predict the impact of changes in nutrients, enzymes, or regulators on this critical cellular process.


2021 ◽  
Author(s):  
Aleksandra Levina ◽  
Kaelin D Fleming ◽  
John E Burke ◽  
Thomas A Leonard

3-phosphoinositide-dependent kinase 1 (PDK1) is an essential serine/threonine protein kinase, which plays a crucial role in cell growth and proliferation. It is often referred to as a master kinase due to its ability to activate at least 23 downstream protein kinases implicated in various signaling pathways. In this study, we have elucidated the mechanism of phosphoinositide-driven PDK1 auto-activation. We show that PDK1 trans-autophosphorylation is mediated by a PIP3-mediated face-to-face dimer. We report regulatory motifs in the kinase-PH interdomain linker that allosterically activate PDK1 autophosphorylation via a linker-swapped dimer mechanism. Finally, we show that PDK1 is autoinhibited by its PH domain and that positive cooperativity of PIP3 binding drives switch-like activation of PDK1. Our work implies that the PDK1-mediated activation of effector kinases, including Akt, PKC, Sgk, S6K and RSK, many of whom are not directly regulated by phosphoinositides, is also likely to be dependent on PIP3 or PI(3,4)P2.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Ponnusamy Manogaran Gopinath ◽  
Krishna Sundar Twayana ◽  
Palaniyandi Ravanan ◽  
John Thomas ◽  
Amitava Mukherjee ◽  
...  

Abstract Background Today, cosmetic products are very popular with both men and women to improve their appearance and increase their social acceptability. Results In this study, nano-sized (30–300 nm) plastic particles were isolated from the commercial face-scrubs and treated on the human keratinocytes. The observed adherence of polyethylene nano-plastics (PENPs), polystyrene NPs (PSNPs), and face-scrubs isolated nano-plastics (NPs) on the keratin layer reveals a significant attachment of NPs from the cosmetics that are applied on the skin for a short duration. This attachment property could facilitate further adherence of protein molecules on NPs and the protein-corona formation. The protein-corona mimics protein aggregates, thereby triggers macropinocytosis, followed by the macropinolysosomal process in the cell. These internalized NPs induced the concentration-dependent cytotoxic, cytostatic and cytoprotective activity in keratinocytes. Both single dose and chronic long-term exposure of lethal and sub-lethal concentrations of NPs resulted in oxidative stress-mediated down-regulation of cell growth and proliferation inhibition. Autophagic structures and premature aging were also observed using an electron microscopy and a senescence marker, respectively in the NPs internalized HaCaT cells incubated in a fresh, NPs-free medium. Conclusion Though 2D culture models have many limitations, it produces significant conceptual advancements. This work provides an insight into the NPs concentration-dependent regulatory, cytoprotective, and cytotoxic effects in HaCaT cells. However, 3D model studies are required to identify the detailed mechanisms of NPs toxicity and cytoprotective events in cells at the molecular level. Graphic abstract


Biomolecules ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1260
Author(s):  
Flavia Suzany Ferreira dos Santos ◽  
Mariana Vieira ◽  
Henrique Nunes da Silva ◽  
Helena Tomás ◽  
Marcus Vinícius Lia Fook

The aim of this study was to promote bioactivity of the PEEK surface using sulfuric acid and piranha solution. PEEK was functionalized by a sulfuric acid treatment for 90 s and by piranha solution for 60 and 90 s. Chemical modification of the PEEK surface was evaluated by infrared spectroscopy, contact angle analysis, cytotoxicity, cell adhesion and proliferation. The spectroscopy characteristic band associated with sulfonation was observed in all treated samples. PEEK with piranha solution 60 s showed an increase in the intensity of the bands, which was even more significant for the longer treatment (90 s). The introduction of the sulfonic acid functional group reduced the contact angle. In cytotoxicity assays, for all treatments, the number of viable cells was higher when compared to those of untreated PEEK. PEEK treated with sulfuric acid and piranha solution for 60 s were the treatments that showed the highest percentage of cell viability with no statistically significant differences between them. The modified surfaces had a greater capacity for inducing cell growth, indicative of effective cell adhesion and proliferation. The proposed chemical modifications are promising for the functionalization of PEEK-based implants, as they were effective in promoting bioactivation of the PEEK surface and in stimulating cell growth and proliferation.


Sign in / Sign up

Export Citation Format

Share Document