MORPHOGENESIS OF THE AMPHIBIAN LIMB REGENERATION BLASTEMA

Author(s):  
David L. Stocum
1998 ◽  
Vol 76 (9) ◽  
pp. 1795-1796 ◽  
Author(s):  
Steven R Scadding ◽  
Andrew Burns

The purpose of this investigation was to determine whether there were any asymmetries in the vascularization of the limb-regeneration blastema in the axolotl, Ambystoma mexicanum, that might be related to pattern formation, and to determine if retinoic acid could modify the vascular patterns of the blastema. We used acrylic casts of the vascular system of the limbs to assess the pattern of vascularization. We observed a very regular symmetrical arrangement of capillaries in the limb-regeneration blastema that did not appear to be modified by doses of retinoic acid sufficient to modify the limb pattern.


Development ◽  
1987 ◽  
Vol 101 (2) ◽  
pp. 267-277 ◽  
Author(s):  
K.J. Griffin ◽  
D.M. Fekete ◽  
B.M. Carlson

Monoclonal antibodies have been used to study minced muscle regeneration in the adult newt, Notophthalmus viridescens. The contralateral limb was amputated and the immunostaining patterns in the regenerating blastema were compared with the minced tissue in sectioned material. Staining with a myofibre-specific antibody, called 12/101 (Kintner & Brockes, 1984), showed that myofibre degeneration was complete by 8–10 days after mincing, with myogenesis commencing 2 days later. Another monoclonal antibody, called 22/18, previously shown to label a subset of cells in the regeneration blastema of the newt (Kintner & Brockes, 1984, 1985), was found also to recognize a population of cells in regenerating minced muscle. At 6 days after mincing, the number of 22/18-positive (22/18+) cells was low but by days 12–16, during the period of myogenesis, their number had increased to become a major population within the minced tissue. A small number of the 22/18+ cells could be double labelled with 12/101 at this time. Prior to this, there was a phase in which 12/101 staining had disappeared from the mince. Cells immunoreactive with both antibodies after this phase confirm that at least some of the 22/18+ cells are myogenic. The number of 22/18+ cells decreased as muscle repair and maturation progressed. These results show that 22/18 is not specifically associated with blastemal cells but is a more general marker for regenerating systems in the newt. They further suggest an alternative interpretation of the double-labelled cells used by Kintner & Brockes (1984) as evidence for myofibre dedifferentiation in limb regeneration. Instead, we propose that such cells represent new myogenesis occurring by tissue repair of locally damaged muscle fibres.


2000 ◽  
Vol 218 (2) ◽  
pp. 125-136 ◽  
Author(s):  
Anoop Kumar ◽  
Cristiana P. Velloso ◽  
Yutaka Imokawa ◽  
Jeremy P. Brockes

1987 ◽  
Vol 65 (8) ◽  
pp. 750-761 ◽  
Author(s):  
David L. Stocum ◽  
Karen Crawford

Cells of the amphibian limb regeneration blastema inherit memories of their level of origin (positional memory) along the limb axes. These memories serve as boundaries of what is to be regenerated, thus preventing regeneration of any but the missing structures. Because of its importance in determining the boundaries of regenerate pattern, it is essential to understand the cellular and molecular basis of positional memory. One approach to this problem is to look for position-related differences in a cell or molecular property along a limb axis and then show, using an agent that modifies regenerate pattern, that the cell or molecular property and the pattern are coordinately modified. We have done this using retinoic acid (RA) as a pattern-modifying agent and an in vivo assay that detects position-related differences in a cell recognition–affinity property along the proximodistal (PD) axis of the regenerating axolotl limb. RA proximalizes positional memory in the PD axis, posteriorizes it in the anteroposterior axis, and ventralizes it in the dorsoventral axis. The level-specific PD cell recognition–affinity property is proximalized by RA, indicating that this property and positional memory are causally related. The effects of RA on positional memory may be mediated through a cellular RA-binding protein (CRABP), since the concentration of unbound (apo) CRABP molecules is highest during early stages of regeneration when the proximalizing effects of RA are greatest.


Sign in / Sign up

Export Citation Format

Share Document