retinoic acid receptor
Recently Published Documents


TOTAL DOCUMENTS

1926
(FIVE YEARS 240)

H-INDEX

109
(FIVE YEARS 10)

2022 ◽  
Author(s):  
Rosevalentine Bosire ◽  
Lina Fadel ◽  
Gábor Mocsár ◽  
Péter Nánási ◽  
Pialy Sen ◽  
...  

Abstract Doxorubicin (Dox), a widely used anticancer DNA-binding drug, affects chromatin in multiple ways, and these effects contribute to both its efficacy and dose-limiting side-effects, especially cardiotoxicity. Here we studied the Dox effects on the chromatin binding of the architectural proteins high mobility group B1 (HMGB1) and the linker histone H1, and the transcription factor retinoic acid receptor (RARα) by fluorescence recovery after photobleaching (FRAP) and fluorescence correlation spectroscopy (FCS), in live cells. At lower drug concentrations, Dox increased the binding of HMGB1 to DNA while decreasing the binding of the linker histone H1. At higher doses that correspond to the peak plasma concentrations reached in chemotherapy, Dox reduced the binding of HMGB1 as well. This biphasic effect is interpreted in terms of a hierarchy of competition between the ligands involved and Dox-induced local conformational changes of nucleosome-free DNA. When combined, FRAP and FCS mobility data suggest that Dox decreases the overall binding of RARα to DNA, an effect that was only partially overcome by agonist binding. The intertwined interactions described likely contribute to the effects as well as side-effects of Dox.


2021 ◽  
Author(s):  
Guoyu Yu ◽  
Paul G. Corn ◽  
Peifei Shen ◽  
Jian H. Song ◽  
Yu-Chen Lee ◽  
...  

Metastatic prostate cancer (PCa) in bone induces bone-forming lesions that contribute to progression and therapy resistance. Currently strategies targeting PCa-induced bone formation are lacking. We previously showed that PCa-induced bone originates from endothelial cells (EC) that have undergone endothelial-to-osteoblast (EC-to-OSB) transition in response to tumor-secreted BMP4. Here, we show that activation of retinoic acid receptor (RAR) inhibits EC-to-OSB transition and reduces PCa-induced bone formation. We found that palovarotene, a RARgamma agonist being tested for heterotopic ossification in fibrodysplasia ossificans progressiva, inhibited EC-to-OSB transition and osteoblast mineralization in vitro, and decreased tumor-induced bone formation and tumor growth in several osteogenic PCa models. RARalpha, beta and gamma isoform knockdown in 2H11 ECs blocked EC-to-OSB transition and osteoblast mineralization. Pan-RAR agonist ATRA inhibited MycCaP-BMP4-induced bone formation and tumor growth under castration. Furthermore, palovarotene or ATRA reduced plasma Tenascin C, a factor secreted by EC-OSB cells, which may be used to monitor treatment response. Mechanistically, BMP4-activated pSmad1 forms a complex with RAR in the nucleus of 2H11 cells. RAR activation by palovarotene or ATRA causes pSmad1 degradation by recruiting E3-ubiquitin ligase Smurf1 into the nuclear pSmad1/RARgamma complex. Our findings suggest that palovarotene can be repurposed to target PCa-induced bone formation to improve clinical outcomes for bone metastasis.


Author(s):  
Ju-Yeon Kim ◽  
In Sook Yang ◽  
Hyeon-Ji Kim ◽  
Jae-Yeun Yoon ◽  
Yong-Hyun Han ◽  
...  

Hepatic polyploidization is closely linked to the progression of nonalcoholic fatty liver disease (NAFLD); however, the underlying molecular mechanism is not clearly understood. In this study, we demonstrated the role of RORα in the maintenance of genomic integrity, particularly in the pathogenesis of NAFLD, using the high-fat diet (HFD)-fed liver-specific RORα knockout (RORα-LKO) mouse model. First, we observed that the loss of hepatic retinoic acid receptor-related orphan receptor α (RORα) accelerated hepatocyte nuclear polyploidization after HFD feeding. In 70% partial hepatectomy experiments, enrichment of hepatocyte polyploidy was more obvious in the RORα-LKO animals, which was accompanied by early progression to the S phase and blockade of the G2/M transition, suggesting a potential role of RORα in suppressing hepatocyte polyploidization in the regenerating liver. An analysis of a publicly available RNA-seq and chromatin immunoprecipitation-seq dataset, together with the Search Tool of the Retrieval of Interacting Genes/Proteins database resource, revealed that DNA endoreplication was the top enriched biological process gene ontology term. Furthermore, we found that E2f7 and E2f8, which encode key transcription factors for DNA endoreplication, were the downstream targets of RORα-induced transcriptional repression. Finally, we showed that the administration of JC1-40, an RORα activator (5 mg/kg body weight), significantly reduced hepatic nuclear polyploidization in the HFD-fed mice. Together, our observations suggest that the RORα-induced suppression of hepatic polyploidization may provide new insights into the pathological polyploidy of NAFLD and may contribute to the development of therapeutic strategies for the treatment of NAFLD.


Haematologica ◽  
2021 ◽  
Author(s):  
Sarah Grasedieck ◽  
Ariene Cabantog ◽  
Liam MacPhee ◽  
Junbum Im ◽  
Christoph Ruess ◽  
...  

Aberrant expression of Ecotropic Viral Integration Site 1 (EVI1) is a hallmark of acute myeloid leukemia (AML) with inv(3) or t(3;3), which is a disease subtype with especially poor outcome. In studying transcriptomes from AML patients with chromosome 3q rearrangements, we identified a significant upregulation of the Nuclear Receptor Interacting Protein 1 (NRIP1) as well as its adjacent non-coding RNA LOC101927745. Utilizing transcriptomic and epigenomic data from over 900 primary patient samples as well as genetic and transcriptional engineering approaches, we have identified several mechanisms that can lead to upregulation of NRIP1 in AML. We hypothesize that the LOC101927745 transcription start site harbors a context-dependent enhancer that is bound by EVI1, causing upregulation of NRIP1 in AML with chr3 abnormalities. Furthermore, we show that NRIP1 knockdown negatively affects the proliferation and survival of 3q-rearranged AML cells and increases their sensitivity towards ATRA, suggesting that NRIP1 is relevant for the pathogenesis of inv(3)/t(3;3) AML and could serve as a novel therapeutic target in myeloid malignancies with 3q abnormalities.


2021 ◽  
Vol 22 (22) ◽  
pp. 12304
Author(s):  
Hyeyoun Kim ◽  
See-Hyoung Park ◽  
Sae Woong Oh ◽  
Kitae Kwon ◽  
Se Jung Park ◽  
...  

Olfactory receptors (ORs), which belong to the G-protein-coupled receptor family, have been widely studied as ectopically expressed receptors in various human tissues, including the skin. However, the physiological functions of only a few OR types have been elucidated in skin cells. All-trans retinoic acid (ATRA) is a well-known medication for various skin diseases. However, many studies have shown that ATRA can have adverse effects, resulting from the suppression of cell proliferation. Here, we investigated the involvement of OR7A17 in the ATRA-induced suppression of human keratinocyte (HaCaT) proliferation. We demonstrated that OR7A17 is expressed in HaCaT keratinocytes, and its expression was downregulated by ATRA. The ATRA-induced downregulation of OR7A17 was attenuated via RAR α or RAR γ antagonist treatment, indicating that the effects of ATRA on OR7A17 expression were mediated through nuclear retinoic acid receptor signaling. Moreover, we found that the overexpression of OR7A17 induced the proliferation of HaCaT cells while counteracting the antiproliferative effect of ATRA. Mechanistically, OR7A17 overexpression reversed the ATRA-induced attenuation of Ca2+ entry. Our findings indicated that ATRA suppresses cell proliferation through the downregulation of OR7A17 via RAR α- and γ-mediated retinoid signaling. Taken together, OR7A17 is a potential therapeutic target for ameliorating the anti-proliferative effects of ATRA.


Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1651
Author(s):  
Lorenz Latta ◽  
Igor Knebel ◽  
Constanze Bleil ◽  
Tanja Stachon ◽  
Priya Katiyar ◽  
...  

Congenital PAX6-aniridia is a rare panocular disease resulting from limbal stem cell deficiency. In PAX6-aniridia, the downregulation of the retinol-metabolizing enzymes ADH7 (All-trans-retinol dehydrogenase 7) and ALDH1A1/A3 (Retinal dehydrogenase 1, Aldehyde dehydrogenase family 1 member A3) have been described in limbal epithelial cells (LECs) and conjunctival epithelial cells. The aim of this study was to identify the role of retinol derivates in the differentiation of human LEC and its potential impact on aniridia-associated keratopathy development. Human LEC were isolated from healthy donor corneas and were cultured with retinol, retinoic acid, or pan-retinoic acid receptor antagonist (AGN 193109) acting on RARα, β, γ (NR1B1, NR1B2 NR1B3) or were cultured with pan-retinoid X receptor antagonist (UVI 3003) acting on RXR α, β, γ (retinoid X receptor, NR2B1, NR2B2, BR2B3). Using qPCR, differentiation marker and retinoid-/fatty acid metabolism-related mRNA expression was analysed. DSG1 (Desmoglein 1), KRT3 (Keratin 3), and SPINK7 (Serine Peptidase Inhibitor Kazal Type 7) mRNA expression was downregulated when retinoid derivates were used. AGN 193109 treatment led to the upregulation of ADH7, KRT3, and DSG1 mRNA expression and to the downregulation of KRT12 (Keratin 12) and KRT19 (Keratin 19) mRNA expression. Retinol and all-trans retinoic acid affect some transcripts of corneal LEC in a similar way to what has been observed in the LEC of PAX6-aniridia patients with the altered expression of differentiation markers. An elevated concentration of retinol derivatives in LEC or an altered response to retinoids may contribute to this pattern. These initial findings help to explain ocular surface epithelia differentiation disorders in PAX6-aniridia and should be investigated in patient cells or in cell models in the future in more detail.


Sign in / Sign up

Export Citation Format

Share Document