limb regeneration
Recently Published Documents


TOTAL DOCUMENTS

731
(FIVE YEARS 97)

H-INDEX

64
(FIVE YEARS 6)

2022 ◽  
Author(s):  
saya furukawa ◽  
sakiya yamamoto ◽  
rena kashimoto ◽  
yoshihiro morishita ◽  
Akira Satoh

Limb regeneration in Ambystoma mexicanum occurs in various sizes of fields and can recreate consistent limb morphology. It was not known what mechanism supports such stable limb morphogenesis regardless of size. Limb regeneration in urodele amphibians has been basically considered to recapitulate the limb developmental processes. Many molecules in the limb developmental processes are conserved with other tetrapods. SHH and FGF8 play important roles in the morphogenesis of limbs among them. Focusing on these two factors, we investigated the detailed expression pattern of Shh and Fgf8 in the various sizes of blastema in axolotl limb regeneration. Fgf8 is expressed in the anterior side of a blastema and Shh is expressed in the posterior side. These are maintained in a mutually dependent manner. We also clarified that the size of Shh and Fgf8 expression domains were scaled as the size of the blastemas increased. However, it was found that the secretion and working range of SHH were kept constant. We also found that the consistent SHH secretion range contributed to promoting cell proliferation and the first digital cartilage differentiation near the Shh expression domain. This would be a reasonable system to guarantees constant limb morphogenesis regardless of the blastema size. We also showed that the Shh-Fgf8 expression domain was shifted posteriorly as the digital differentiation progressed. Consistently, slowing the timing of blocking Shh signaling resulted in morphological defects that could be observed in only posterior digits. The revealed posteriorly shifting Shh-Fgf8 domain might explain urodele specific digit formation, in which digits are added posteriorly.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Michael J Abrams ◽  
Fayth Hui Tan ◽  
Yutian Li ◽  
Ty Basinger ◽  
Martin L Heithe ◽  
...  

Can limb regeneration be induced? Few have pursued this question, and an evolutionarily conserved strategy has yet to emerge. This study reports a strategy for inducing regenerative response in appendages, which works across three species that span the animal phylogeny. In Cnidaria, the frequency of appendage regeneration in the moon jellyfish Aurelia was increased by feeding with the amino acid L-leucine and the growth hormone insulin. In insects, the same strategy induced tibia regeneration in adult Drosophila. Finally, in mammals, L-leucine and sucrose administration induced digit regeneration in adult mice, including dramatically from mid-phalangeal amputation. The conserved effect of L-leucine and insulin/sugar suggests a key role for energetic parameters in regeneration induction. The simplicity by which nutrient supplementation can induce appendage regeneration provides a testable hypothesis across animals.


2021 ◽  
Vol 9 ◽  
Author(s):  
Vivien Bothe ◽  
Igor Schneider ◽  
Nadia B. Fröbisch

Regeneration, the replacement of body parts in a living animal, has excited scientists for centuries and our knowledge of vertebrate appendage regeneration has increased significantly over the past decades. While the ability of amniotes to regenerate body parts is very limited, members of other vertebrate clades have been shown to have rather high regenerative capacities. Among tetrapods (four-limbed vertebrates), only salamanders show unparalleled capacities of epimorphic tissue regeneration including replacement of organ and body parts in an apparently perfect fashion. The closest living relatives of Tetrapoda, the lungfish, show regenerative abilities that are comparable to those of salamanders and recent studies suggest that these high regenerative capacities may indeed be ancestral for bony fish (osteichthyans) including tetrapods. While great progress has been made in recent years in understanding the cellular and molecular mechanisms deployed during appendage regeneration, comparatively few studies have investigated gross morphological and histological features of regenerated fins and limbs. Likewise, rather little is known about how fin regeneration compares morphologically to salamander limb regeneration. In this study, we investigated the morphology and histology of regenerated fins in all three modern lungfish families. Data from histological serial sections, 3D reconstructions, and x-ray microtomography scans were analyzed to assess morphological features, quality and pathologies in lungfish fin regenerates. We found several anomalies resulting from imperfect regeneration in regenerated fins in all investigated lungfish species, including fusion of skeletal elements, additional or fewer elements, and distal branching. The similarity of patterns in regeneration abnormalities compared to salamander limb regeneration lends further support to the hypothesis that high regenerative capacities are plesiomorphic for sarcopterygians.


2021 ◽  
Vol 12 ◽  
Author(s):  
Can Aztekin

Therapeutic implementation of human limb regeneration is a daring aim. Studying species that can regrow their lost appendages provides clues on how such a feat can be achieved in mammals. One of the unique features of regeneration-competent species lies in their ability to seal the amputation plane with a scar-free wound epithelium. Subsequently, this wound epithelium advances and becomes a specialized wound epidermis (WE) which is hypothesized to be the essential component of regenerative success. Recently, the WE and specialized WE terminologies have been used interchangeably. However, these tissues were historically separated, and contemporary limb regeneration studies have provided critical new information which allows us to distinguish them. Here, I will summarize tissue-level observations and recently identified cell types of WE and their specialized forms in different regeneration models.


2021 ◽  
Author(s):  
Olena Zhulyn ◽  
Hannah Dorothy Rosenblatt ◽  
Leila Shokat ◽  
Shizhong A Dai ◽  
Duygu Kuzuoglu-Öztürk ◽  
...  

An outstanding mystery in biology is why some species, such as the axolotl, can scarlessly heal and regenerate tissues while most mammals cannot. Here, we demonstrate that rapid activation of protein synthesis is a unique, and previously uncharacterized, feature of the injury response critical for limb regeneration in the axolotl (A. mexicanum). By applying polysome sequencing, we identify hundreds of transcripts, including antioxidants and ribosome components, which do not change in their overall mRNA abundance but are selectively activated at the level of translation from pre-existing mRNAs in response to injury. In contrast, we show that protein synthesis is not activated in response to digit amputation in the non-regenerative mouse. We further identify the mTORC1 pathway as a key upstream signal that mediates this regenerative translation response in the axolotl. Inhibition of this pathway is sufficient to suppress translation and axolotl regeneration. Surprisingly, although mTOR is highly evolutionarily conserved, we discover unappreciated expansions in mTOR protein sequence among urodele amphibians. By engineering an axolotl mTOR in human cells, we demonstrate that this change creates a hypersensitive kinase that may allow axolotls to maintain this pathway in a highly labile state primed for rapid activation. This may underlie metabolic differences and nutrient sensing between regenerative and non-regenerative species that are key to regeneration. Together, these findings highlight the unanticipated impact of the translatome on orchestrating the early steps of wound healing in highly regenerative species and provide a missing link in our understanding of vertebrate regenerative potential.


Biomedicines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1426
Author(s):  
Martin Miguel Casco-Robles ◽  
Kayo Yasuda ◽  
Kensuke Yahata ◽  
Fumiaki Maruo ◽  
Chikafumi Chiba

Newts are unique salamanders that can regenerate their limbs as postmetamorphic adults. In order to regenerate human limbs as newts do, it is necessary to determine whether the cells homologous to those contributing to the limb regeneration of adult newts also exist in humans. Previous skin manipulation studies in larval amphibians have suggested that stump skin plays a pivotal role in the axial patterning of regenerating limbs. However, in adult newts such studies are limited, though they are informative. Therefore, in this article we have conducted skin manipulation experiments such as rotating the skin 180° around the proximodistal axis of the limb and replacing half of the skin with that of another location on the limb or body. We found that, contrary to our expectations, adult newts robustly regenerated limbs with a normal axial pattern regardless of skin manipulation, and that the appearance of abnormalities was stochastic. Our results suggest that the tissue under the skin, rather than the skin itself, in the intact limb is of primary importance in ensuring the normal axial pattern formation in adult newt limb regeneration. We propose that the important tissues are located in small areas underlying the ventral anterior and ventral posterior skin.


Author(s):  
Anastasiya S. Ivanova ◽  
Maria B. Tereshina ◽  
Karina R. Araslanova ◽  
Natalia Y. Martynova ◽  
Andrey G. Zaraisky

Warm-blooded vertebrates regenerate lost limbs and their parts in general much worse than fishes and amphibians. We previously hypothesized that this reduction in regenerative capability could be explained in part by the loss of some genes important for the regeneration in ancestors of warm-blooded vertebrates. One of such genes could be ag1, which encodes secreted protein disulfide isomerase of the Agr family. Ag1 is activated during limb and tail regeneration in the frog Xenopus laevis tadpoles and is absent in warm-blooded animals. The essential role of another agr family gene, agr2, in limb regeneration was demonstrated previously in newts. However, agr2, as well as the third member of agr family, agr3, are present in all vertebrates. Therefore, it is important to verify if the activity of ag1 lost by warm-blooded vertebrates is also essential for regeneration in amphibians, which could be a further argument in favor of our hypothesis. Here, we show that in the Xenopus laevis tadpoles in which the expression of ag1 or agr2 was artificially suppressed, regeneration of amputated tail tips was also significantly reduced. Importantly, overexpression of any of these agrs or treatment of tadpoles with any of their recombinant proteins resulted in the restoration of tail regeneration in the refractory period when these processes are severely inhibited in normal development. These findings demonstrate the critical roles of ag1 and agr2 in regeneration in frogs and present indirect evidence that the loss of ag1 in evolution could be one of the prerequisites for the reduction of regenerative ability in warm-blooded vertebrates.


Author(s):  
Ryan J. Debuque ◽  
Andrew J. Hart ◽  
Gabriela H. Johnson ◽  
Nadia A. Rosenthal ◽  
James W. Godwin

The lack of scar-free healing and regeneration in many adult human tissues imposes severe limitations on the recovery of function after injury. In stark contrast, salamanders can functionally repair a range of clinically relevant tissues throughout adult life. The impressive ability to regenerate whole limbs after amputation, or regenerate following cardiac injury, is critically dependent on the recruitment of (myeloid) macrophage white blood cells to the site of injury. Amputation in the absence of macrophages results in regeneration failure and scar tissue induction. Identifying the exact hematopoietic source or reservoir of myeloid cells supporting regeneration is a necessary step in characterizing differences in macrophage phenotypes regulating scarring or regeneration across species. Mammalian wounds are dominated by splenic-derived monocytes that originate in the bone marrow and differentiate into macrophages within the wound. Unlike mammals, adult axolotls do not have functional bone marrow but instead utilize liver and spleen tissues as major sites for adult hematopoiesis. To interrogate leukocyte identity, tissue origins, and modes of recruitment, we established several transgenic axolotl hematopoietic tissue transplant models and flow cytometry protocols to study cell migration and identify the source of pro-regenerative macrophages. We identified that although bidirectional trafficking of leukocytes can occur between spleen and liver tissues, the liver is the major source of leukocytes recruited to regenerating limbs. Recruitment of leukocytes and limb regeneration occurs in the absence of the spleen, thus confirming the dependence of liver-derived myeloid cells in regeneration and that splenic maturation is dispensable for the education of pro-regenerative macrophages. This work provides an important foundation for understanding the hematopoietic origins and education of myeloid cells recruited to, and essential for, adult tissue regeneration.


Sign in / Sign up

Export Citation Format

Share Document