Delivery of Macromolecules into Cells Expressing a Viral Membrane Fusion Protein

Author(s):  
HARMA ELLENS ◽  
STEPHEN DOXSEY ◽  
JEFFREY S. GLENN ◽  
JUDITH M. WHITE
2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Steinar Halldorsson ◽  
Sai Li ◽  
Mengqiu Li ◽  
Karl Harlos ◽  
Thomas A. Bowden ◽  
...  

2009 ◽  
Vol 9 ◽  
pp. 764-780 ◽  
Author(s):  
Laura Wessels ◽  
Keith Weninger

Enveloped viruses commonly employ membrane fusion during cell penetration in order to deliver their genetic material across the cell boundary. Large conformational changes in the proteins embedded in the viral membrane play a fundamental role in the membrane fusion process. Despite the tremendously wide variety of viruses that contain membranes, it appears that they all contain membrane fusion protein machinery with a remarkably conserved mechanism of action. Much of our current biochemical understanding of viral membrane fusion has been derived from high-resolution structural studies and solution-basedin vitroassays in which viruses fuse with liposomes or cells. Recently, single-particle experiments have been used to provide measurements of details not available in the bulk assays. Here we focus our discussion on the key dynamical aspects of fusion protein structure, along with some of the experimental and computational techniques presently being used to investigate viral-mediated membrane fusion.


Virology ◽  
2015 ◽  
Vol 479-480 ◽  
pp. 498-507 ◽  
Author(s):  
Stephen C. Harrison

2014 ◽  
Vol 1838 (1) ◽  
pp. 355-363 ◽  
Author(s):  
Pierre Bonnafous ◽  
Marie-Claire Nicolaï ◽  
Jean-Christophe Taveau ◽  
Michel Chevalier ◽  
Fabienne Barrière ◽  
...  

2000 ◽  
Vol 20 (6) ◽  
pp. 557-570 ◽  
Author(s):  
Danika L. LeDuc ◽  
Yeon-Kyun Shin

A number of different viral spike proteins, responsible for membrane fusion, show striking similarities in their core structures. The prospect of developing a general structure-based mechanism seems plausible in light of these newly determined structures. Influenza hemagglutinin (HA) is the best-studied fusion machine, whose action has previously been described by a hypothetical “spring-loaded” model. This model has recently been extended to explain the mechanism of other systems, such as HIV gp120–gp41. However, evidence supporting this idea is insufficient, requiring re-examination of the mechanism of HA-induced membrane fusion. Recent experiments with a shortened construct of HA, which is able to induce lipid mixing, have provided evidence for an alternative scenario for HA-induced membrane fusion and perhaps that of other viral systems.


Sign in / Sign up

Export Citation Format

Share Document