conserved domain
Recently Published Documents


TOTAL DOCUMENTS

389
(FIVE YEARS 77)

H-INDEX

64
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Ben F Luisi ◽  
Md. Saiful Islam ◽  
Steven William Hardwick ◽  
Laura Quell ◽  
Dimitri Y Chirgadze ◽  
...  

The biogenesis of the essential precursor of the bacterial cell envelope, glucosamine-6-phosphate (GlcN6P), is controlled through intricate post-transcription networks mediated by GlmZ, a small regulatory RNA (sRNA). GlmZ stimulates translation of the mRNA encoding GlcN6P synthetase in Escherichia coli, but when bound by the protein RapZ, it becomes inactivated through cleavage by the endoribonuclease RNase E. Here we report the cryoEM structure of the RapZ:GlmZ complex, revealing a complementary match of the protein tetrameric quaternary structure to an imperfect structural repeat in the RNA. The RNA is contacted mostly through a highly conserved domain of RapZ that shares deep evolutionary relationship with phosphofructokinase and suggests links between metabolism and riboregulation. We also present the structure of a pre-cleavage encounter intermediate formed between the binary RapZ:GlmZ complex and RNase E that reveals how GlmZ is presented and recognised for cleavage. The structures suggest how other encounter complexes might guide recognition and action of endoribonucleases on target transcripts, and how structured substrates in polycistronic precursors are recognised for processing.


2021 ◽  
Vol 10 (1) ◽  
pp. 9
Author(s):  
Leandro Gammuto ◽  
Carolina Chiellini ◽  
Marta Iozzo ◽  
Renato Fani ◽  
Giulio Petroni

Azurin is a bacterial-derived cupredoxin, which is mainly involved in electron transport reactions. Interest in azurin protein has risen in recent years due to its anticancer activity and its possible applications in anticancer therapies. Nevertheless, the attention of the scientific community only focused on the azurin protein found in Pseudomonas aeruginosa (Proteobacteria, Gammaproteobacteria). In this work, we performed the first comprehensive screening of all the bacterial genomes available in online repositories to assess azurin distribution in the three domains of life. The Azurin coding gene was not detected in the domains Archaea and Eucarya, whereas it was detected in phyla other than Proteobacteria, such as Bacteroidetes, Verrucomicrobia and Chloroflexi, and a phylogenetic analysis of the retrieved sequences was performed. Observed patchy distribution and phylogenetic data suggest that once it appeared in the bacterial domain, the azurin coding gene was lost in several bacterial phyla and/or anciently horizontally transferred between different phyla, even though a vertical inheritance appeared to be the major force driving the transmission of this gene. Interestingly, a shared conserved domain has been found among azurin members of all the investigated phyla. This domain is already known in P. aeruginosa as p28 domain and its importance for azurin anticancer activity has been widely explored. These findings may open a new and intriguing perspective in deciphering the azurin anticancer mechanisms and to develop new tools for treating cancer diseases.


2021 ◽  
Vol 8 ◽  
Author(s):  
Mingming Han ◽  
Tianheng Gao ◽  
Yuxin Liu ◽  
Zakaria Zuraini ◽  
Chenxi Zhu ◽  
...  

Berberine hydrochloride is an isoquinoline alkaloid, which has antitumoral, antibacterial, and antiviral activities in vivo and in vitro. Charybdis japonica is one of the main economic species of crab in Southeast Asia. We studied the molecular mechanism of oxidative stress in berberine hydrochloride-treated C. japonica infected with Aeromonas hydrophila. C. japonica were infected with A. hydrophila after being submerged in different concentrations (0, 100, 200, and 300 mg/L) of berberine hydrochloride for 48 h. The full-length cDNA of Prx6 and the ORFs of Prx5 and PXL2A were cloned. Prx6 and PXL2A each have one conserved domain, Cys44, and Cys81. The Prx5 conserved domain contains three important Cys loci, Cys75, Cys100, and Cys76. Prx6 was different from Prx5 and PXL2A in the Peroxiredoxin family. The transcription levels of PXL2A infected with A. hydrophila were all higher than the control. The transcription levels of C. japonica were further increased by adding berberine hydrochloride and were increased the highest at a concentration of 300 mg/L. The activities of glutathione peroxidase, superoxide dismutase, and catalase in the hepatopancreas of berberine hydrochloride-treated C. japonica infected with A. hydrophila were significantly increased compared with those only infected with A. hydrophila and the control group. The glutathione transferase activity in the hepatopancreas was significantly increased in berberine hydrochloride-treated C. japonica. The results of this study provide a new understanding of the potential role of berberine hydrochloride on the oxidative stress mechanisms of C. japonica.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Cameron L. M. Gilchrist ◽  
Yit-Heng Chooi

Abstract Background Fungi are prolific producers of secondary metabolites (SMs), which are bioactive small molecules with important applications in medicine, agriculture and other industries. The backbones of a large proportion of fungal SMs are generated through the action of large, multi-domain megasynth(et)ases such as polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs). The structure of these backbones is determined by the domain architecture of the corresponding megasynth(et)ase, and thus accurate annotation and classification of these architectures is an important step in linking SMs to their biosynthetic origins in the genome. Results Here we report synthaser, a Python package leveraging the NCBI’s conserved domain search tool for remote prediction and classification of fungal megasynth(et)ase domain architectures. Synthaser is capable of batch sequence analysis, and produces rich textual output and interactive visualisations which allow for quick assessment of the megasynth(et)ase diversity of a fungal genome. Synthaser uses a hierarchical rule-based classification system, which can be extensively customised by the user through a web application (http://gamcil.github.io/synthaser). We show that synthaser provides more accurate domain architecture predictions than comparable tools which rely on curated profile hidden Markov model (pHMM)-based approaches; the utilisation of the NCBI conserved domain database also allows for significantly greater flexibility compared to pHMM approaches. In addition, we demonstrate how synthaser can be applied to large scale genome mining pipelines through the construction of an Aspergillus PKS similarity network. Conclusions Synthaser is an easy to use tool that represents a significant upgrade to previous domain architecture analysis tools. It is freely available under a MIT license from PyPI (https://pypi.org/project/synthaser) and GitHub (https://github.com/gamcil/synthaser).


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Abril Navarrete-Mena ◽  
Judith Pacheco-Yépez ◽  
Verónica Ivonne Hernández-Ramírez ◽  
Alma Reyna Escalona-Montaño ◽  
Jenny Nancy Gómez-Sandoval ◽  
...  

Entamoeba histolytica is the causative agent of amoebiasis, and Entamoeba dispar is its noninvasive morphological twin. Entamoeba invadens is a reptilian parasite. In the present study, Western blot, phosphatase activity, immunofluorescence, and bioinformatic analyses were used to identify PP2C phosphatases of E. histolytica, E. dispar, and E. invadens. PP2C was identified in trophozoites of all Entamoeba species and cysts of E. invadens. Immunoblotting using a Leishmania mexicana anti-PP2C antibody recognized a 45.2 kDa PP2C in all species. In E. histolytica and E. invadens, a high molecular weight element PP2C at 75 kDa was recognized, mainly in cysts of E. invadens. Immunofluorescence demonstrated the presence of PP2C in membrane and vesicular structures in the cytosol of all species analyzed. The ~75 kDa PP2C of Entamoeba spp. shows the conserved domain characteristic of phosphatase enzymes (according to in silico analysis). Possible PP2C participation in the encystation process was discussed.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0252001
Author(s):  
Álvaro Montesinos ◽  
Chris Dardick ◽  
María José Rubio-Cabetas ◽  
Jérôme Grimplet

Almond breeding programs aimed at selecting cultivars adapted to intensive orchards have recently focused on the optimization of tree architecture. This multifactorial trait is defined by numerous components controlled by processes such as hormonal responses, gravitropism and light perception. Gravitropism sensing is crucial to control the branch angle and therefore, the tree habit. A gene family, denominated IGT family after a shared conserved domain, has been described as involved in the regulation of branch angle in several species, including rice and Arabidopsis, and even in fruit trees like peach. Here we identified six members of this family in almond: LAZY1, LAZY2, TAC1, DRO1, DRO2, IGT-like. After analyzing their protein sequences in forty-one almond cultivars and wild species, little variability was found, pointing a high degree of conservation in this family. To our knowledge, this is the first effort to analyze the diversity of IGT family proteins in members of the same tree species. Gene expression was analyzed in fourteen cultivars of agronomical interest comprising diverse tree habit phenotypes. Only LAZY1, LAZY2 and TAC1 were expressed in almond shoot tips during the growing season. No relation could be established between the expression profile of these genes and the variability observed in the tree habit. However, some insight has been gained in how LAZY1 and LAZY2 are regulated, identifying the IPA1 almond homologues and other transcription factors involved in hormonal responses as regulators of their expression. Besides, we have found various polymorphisms that could not be discarded as involved in a potential polygenic origin of regulation of architectural phenotypes. Therefore, we have established that neither the expression nor the genetic polymorphism of IGT family genes are correlated to diversity of tree habit in currently commercialized almond cultivars, with other gene families contributing to the variability of these traits.


2021 ◽  
Vol 22 (19) ◽  
pp. 10603
Author(s):  
Courtney M. Matzke ◽  
Hasan J. Hamam ◽  
Paige M. Henning ◽  
Kyra Dougherty ◽  
Joel S. Shore ◽  
...  

Heterostyly is a breeding system that promotes outbreeding through a combination of morphological and physiological floral traits. In Turnera these traits are governed by a single, hemizygous S-locus containing just three genes. We report that the S-locus gene, BAHD, is mutated and encodes a severely truncated protein in a self-compatible long homostyle species. Further, a self-compatible long homostyle mutant possesses a T. krapovickasii BAHD allele with a point mutation in a highly conserved domain of BAHD acyl transferases. Wild type and mutant TkBAHD alleles were expressed in Arabidopsis to assay for brassinosteroid (BR) inactivating activity. The wild type but not mutant allele caused dwarfism, consistent with the wild type possessing, but the mutant allele having lost, BR inactivating activity. To investigate whether BRs act directly in self-incompatibility, BRs were added to in vitro pollen cultures of the two mating types. A small morph specific stimulatory effect on pollen tube growth was found with 5 µM brassinolide, but no genotype specific inhibition was observed. These results suggest that BAHD acts pleiotropically to mediate pistil length and physiological mating type through BR inactivation, and that in regard to self-incompatibility, BR acts by differentially regulating gene expression in pistils, rather than directly on pollen.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jingwen Chen ◽  
Qian Yan ◽  
Jiawei Li ◽  
Lei Feng ◽  
Yi Zhang ◽  
...  

Abstract Background The GRAS gene family plays crucial roles in multiple biological processes of plant growth, including seed development, which is related to seedless traits of litchi (Litchi chinensis Sonn.). However, it hasn’t been fully identified and analyzed in litchi, an economic fruit tree cultivated in subtropical regions. Results In this study, 48 LcGRAS proteins were identified and termed according to their chromosomal location. LcGRAS proteins can be categorized into 14 subfamilies through phylogenetic analysis. Gene structure and conserved domain analysis revealed that different subfamilies harbored various motif patterns, suggesting their functional diversity. Synteny analysis revealed that the expansion of the GRAS family in litchi may be driven by their tandem and segmental duplication. After comprehensively analysing degradome data, we found that four LcGRAS genes belong to HAM subfamily were regulated via miR171-mediated degradation. The various expression patterns of LcGRAS genes in different tissues uncovered they were involved in different biological processes. Moreover, the different temporal expression profiles of LcGRAS genes between abortive and bold seed indicated some of them were involved in maintaining the normal development of the seed. Conclusion Our study provides comprehensive analyses on GRAS family members in litchi, insight into a better understanding of the roles of GRAS in litchi development, and lays the foundation for further investigations on litchi seed development.


2021 ◽  
Vol 27 (1) ◽  
pp. 15-22
Author(s):  
Zyana Fithri Nur Faizah ◽  
Nia Kurniawan ◽  
Fatchiyah Fatchiyah

accines based on epitope are alternative treatments for snakebite aside from anti-venom immunoglobulin, which is specific and not cross-reaction. However, the potential kistomin epitope has not been known. This study identified the region of T cells epitope and evaluated their immunogenicity to induce an immune response by in-silico. Sequences of kistomin were collected from Swiss-Prot with ID P0CB14. The physico-chemical and conserved domain of kistomin were predicted by using ProtParam and the NCBI database. The T cell epitope was predicted by using the Artificial Neural Network (ANN) method on the IEDB website. Epitopes with MHC-IC50 values more than 250 nM were further analyzed for conservation and immunogenicity on the IEDB website as well. After that, the candidate 9-mer epitope was interacted by simulated docking with four Major Histocompatibility Complex (MHC) molecules (5ENW, 6VB0, 3PGD, 6DIG). The conserved 9-mer epitope candidates with high immunogenicity and having similarities with the 15-mer epitope candidates are 4-VLLVTICLA-12 and 27-NVNDYEVVY-35. The 4-VLLVTICLA-12 candidate epitope interacted at β-sheet structure of four MHC. In contrast, The 27-NVNDYEVVY-35 candidate epitope interacted at α-helix and β-sheet structures of HLA-B*15:02 MHC. This study suggested 27-NVNDYEVVY-35 is potentially used as vaccine from envenomation Calloselasma rhodhostoma. In future studies, other alelles can be used to predict epitope from metalloproteinase domain in kistomin.


2021 ◽  
Author(s):  
Cameron LM Gilchrist ◽  
Yit Heng Chooi

Abstract Background: Fungi are prolific producers of secondary metabolites (SMs), which are bioactive small molecules with important applications in medicine, agriculture and other industries. The backbones of a large proportion of fungal SMs are generated through the action of large, multi-domain megasynth(et)ases such as polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs). The structure of these backbones is determined by the domain architecture of the corresponding megasynth(et)ase, and thus accurate annotation and classification of these architectures is an important step in linking SMs to their biosynthetic origins in the genome. Results: Here we report synthaser, a Python package leveraging the NCBI's conserved domain search tool for remote prediction and classification of fungal megasynth(et)ase domain architectures. synthaser is capable of batch sequence analysis, and produces rich textual output and interactive visualisations which allow for quick assessment of the megasynth(et)ase diversity of a fungal genome. synthaser uses a hierarchical rule-based classification system, which can be extensively customised by the user through a web application (http://gamcil.github.io/synthaser). We show that synthaser provides more accurate domain architecture predictions than comparable tools which rely on curated profile hidden Markov model (pHMM)-based approaches; the utilisation of the NCBI conserved domain database also allows for significantly greater flexibility compared to pHMM approaches. In addition, we demonstrate how synthaser can be applied to large scale genome mining pipelines through the construction of an Aspergillus PKS similarity network. Conclusions: synthaser is an easy to use tool that represents a significant upgrade to previous domain architecture analysis tools. synthaser is freely available under a MIT license from PyPI (https://pypi.org/project/synthaser) and GitHub (https://github.com/gamcil/synthaser). Keywords: secondary metabolism, domain architecture, polyketide synthase, nonribosomal peptide synthetase, bioinformatics, software


Sign in / Sign up

Export Citation Format

Share Document