transmission studies
Recently Published Documents


TOTAL DOCUMENTS

389
(FIVE YEARS 60)

H-INDEX

36
(FIVE YEARS 5)

Author(s):  
Lincoln Timinao ◽  
Rebecca Vinit ◽  
Michelle Katusele ◽  
Tamarah Koleala ◽  
Elma Nate ◽  
...  

Plasmodium transmission from humans to mosquitoes is an understudied bottleneck in the transmission of malaria. Direct membrane feeding assays (DMFA) allow detailed malaria transmission studies from humans to mosquitoes. Especially for Plasmodium vivax, which cannot be cultured long-term under laboratory conditions, implementation of DMFAs requires proximity to P. vivax endemic areas. In this study, we investigated the infectivity of symptomatic Plasmodium infections to Anopheles farauti colony mosquitoes in Papua New Guinea (PNG). A total of 182 DMFAs were performed with venous blood collected from rapid diagnostic test (RDT) positive symptomatic malaria patients and subsequently analysed by light microscopy and quantitative real time polymerase chain reaction (qPCR). DMFAs resulted in mosquito infections in 20.9% (38/182) of cases. By light microscopy and qPCR, 10 – 11% of P. falciparum and 32 – 44% of P. vivax positive individuals infected An. farauti. Fifty-eight percent of P. vivax and 15% of P. falciparum gametocytaemic infections infected An farauti.


Plant Disease ◽  
2021 ◽  
Author(s):  
Euclides Sousa Vilanova ◽  
Anderson Ramos ◽  
Maria C. Souza Oliveira ◽  
Mariana Bossi Esteves ◽  
Marcos Cesar Gonçalves ◽  
...  

Maize striate mosaic virus (MSMV; genus Mastrevirus), was recently reported in maize plants in Brazil, and also detected by metagenomic analyses in the corn leafhopper, Dalbulus maidis (DeLong & Wolcott). Although these findings suggested that D. maidis is a potential vector, no transmission studies have been performed. Here, we tested the transmission of MSMV by D. maidis from field-collected infected plants and plants infected with MSMV via leafhopper-mediated transmission in the laboratory; all plants were confirmed positive for MSMV by PCR. In each one of three transmission replicates, aviruliferous D. maidis nymphs and adults were confined together on a source plant during a 4-day acquisition access period (AAP), and subsequently transferred to healthy maize seedlings (10 individuals per test plant) in a series of 4-day inoculation access periods (IAPs). We also tested transmission by the corn aphid, Rhopalosiphum maidis (Fitch) and by mechanical inoculation of healthy maize seedlings. Only D. maidis transmitted MSMV, with overall transmission rates of 29.4 and 39.5% using field-collected infected plants, and 18.5% using infected plants in laboratory. D. maidis transmitted MSMV until the third (8-12 days after the AAP) or fourth successive IAP (12-16 days) with gradual loss in transmission efficiency and rate of viruliferous insects over time, suggesting a persistent, but non-propagative mode of transmission. Infected test plants showed mottling symptoms with mild chlorotic streaks and height reduction. This is the first report of transmission of a mastrevirus by D. maidis, facilitating the completion of Koch’s postulate for MSMV.


2021 ◽  
Vol 15 (11) ◽  
pp. e0009999
Author(s):  
Ole Lagatie ◽  
Emmanuel Njumbe Ediage ◽  
Dirk Van Roosbroeck ◽  
Stijn Van Asten ◽  
Ann Verheyen ◽  
...  

The neglected tropical disease onchocerciasis, or river blindness, is caused by infection with the filarial nematode Onchocerca volvulus. Current estimates indicate that 17 million people are infected worldwide, the majority of them living in Africa. Today there are no non-invasive tests available that can detect ongoing infection, and that can be used for effective monitoring of elimination programs. In addition, to enable pharmacodynamic studies with novel macrofilaricide drug candidates, surrogate endpoints and efficacy biomarkers are needed but are non-existent. We describe the use of a multimodal untargeted mass spectrometry-based approach (metabolomics and lipidomics) to identify onchocerciasis-associated metabolites in urine and plasma, and of specific lipid features in plasma of infected individuals (O. volvulus infected cases: 68 individuals with palpable nodules; lymphatic filariasis cases: 8 individuals; non-endemic controls: 20 individuals). This work resulted in the identification of elevated concentrations of the plasma metabolites inosine and hypoxanthine as biomarkers for filarial infection, and of the urine metabolite cis-cinnamoylglycine (CCG) as biomarker for O. volvulus. During the targeted validation study, metabolite-specific cutoffs were determined (inosine: 34.2 ng/ml; hypoxanthine: 1380 ng/ml; CCG: 29.7 ng/ml) and sensitivity and specificity profiles were established. Subsequent evaluation of these biomarkers in a non-endemic population from a different geographical region invalidated the urine metabolite CCG as biomarker for O. volvulus. The plasma metabolites inosine and hypoxanthine were confirmed as biomarkers for filarial infection. With the availability of targeted LC-MS procedures, the full potential of these 2 biomarkers in macrofilaricide clinical trials, MDA efficacy surveys, and epidemiological transmission studies can be investigated.


2021 ◽  
Author(s):  
Aaron Prosser ◽  
David L. Streiner

Objective: To evaluate the benefits of vaccine mandates and vaccine passports (VMVP) for SARS-CoV-2 by estimating the benefits of vaccination and exclusion of unvaccinated people from different settings. Methods: Quantified the benefits of vaccination using meta-analyses of randomized controlled trials (RCTs), cohort studies, and transmission studies to estimate the relative risk reduction (RRR), absolute risk reduction (ARR), and number needed to vaccinate (NNV) for transmission, infection, and severe illness/hospitalization. Estimated the baseline infection risk and the baseline transmission risks for different settings. Quantified the benefits of exclusion using these data to estimate the number of unvaccinated people needed to exclude (NNE) to prevent one transmission in different settings. Modelled how the benefits of vaccination and exclusion change as a function of baseline infection risk. Studies were identified from recent systematic reviews and a search of MEDLINE, MEDLINE In-Process, Embase, Global Health, and Google Scholar. Results: Data on infection and severe illness/hospitalization were obtained from 10 RCTs and 19 cohort studies of SARS-CoV-2 vaccines, totalling 5,575,049 vaccinated and 4,341,745 unvaccinated participants. Data from 7 transmission studies were obtained, totalling 557,020 index cases, 49,328 contacts of vaccinated index cases, and 1,294,372 contacts of unvaccinated index cases. The estimated baseline infection risk in the general population is 3.04%. The estimated breakthrough infection risk in the vaccinated population is 0.57%. Vaccines are very effective at reducing the risk of infection (RRR=88%, ARR=2.59%, NNV=39) and severe illness/hospitalization (RRR=89%, ARR=0.15%, NNV=676) in the general population. While the latter effect is small, vaccines nearly eliminate the baseline risk of severe illness/hospitalization (0.16%). Among an infected persons closest contacts (primarily household members), vaccines reduce transmission risk (RRR=41%, ARR=11.04%, NNV=9). In the general population, the effect of vaccines on transmission risk is likely very small for most settings and baseline infection risks (NNVs ≥ 1,000). Infected vaccinated people have a nontrivial transmission risk for their closest contacts (14.35%), but it is less than unvaccinated people (23.91%). The transmission risk reduction gained by excluding unvaccinated people is very small for most settings: healthcare (NNE=4,699), work/study places (NNE=2,193), meals/gatherings (NNE=531), public places (NNE=1,731), daily conversation (NNE=587), and transportation (NNE=4,699). Exclusion starts showing benefits on transmission risk for some settings when the baseline infection risk is between 10% to 20%. Conclusions: The benefits of VMVP are clear: the coercive element to these policies will likely lead to increased vaccination levels. Our study shows that higher vaccination levels will drive infections lower and almost eliminate severe illness/hospitalization from the general population. This will substantially lower the burden on healthcare systems. The benefits of exclusion are less clear. The NNEs suggest that hundreds, and even thousands, of unvaccinated people may need to be excluded from various settings to prevent one SARS-CoV-2 transmission from unvaccinated people. Therefore, consideration of the costs of exclusion is warranted, including staffing shortages from losing unvaccinated healthcare workers, unemployment/unemployability, financial hardship for unvaccinated people, and the creation of a class of citizens who are not allowed to fully participate in many areas of society. Registration: This study is not registered. Funding: This study received no grant from any funding agency, commercial, or not-for-profit sectors. It has also received no support of any kind from any individual or organization.


2021 ◽  
Vol 9 (10) ◽  
pp. 2022
Author(s):  
William A. Neill ◽  
Rebekah C. Kading

Kaeng Khoi virus (KKV; Order: Bunyavirales, Family: Peribunyaviridae, Genus: Orthobunyavirus), is an endemic viral infection of the wrinkle-lipped free-tailed bat (Chaerephon plicatus; also known as Tadarida plicata plicata). Viral isolates from bat bugs (Family: Cimicidae) suggest vector-borne transmission, but in general little is known about the ecology of KKV and seroprevalence in the local human and animal populations. Transmission studies and a serosurvey were carried out in Kaeng Khoi cave, Saraburi province, Thailand, during 1973–1974. Experimental transmission studies were performed with bat bugs captured within the cave to determine the potential for vector-borne transmission, and sentinel laboratory mice placed inside arthropod-proof cages within the cave to assess the potential for aerosolized transmission. Antibodies to KKV were detected in roof rats (Rattus rattus) inhabiting the cave, in dogs living in the valley, and in humans. Freshly collected cimicids were positive for KKV, but the virus did not replicate in laboratory-inoculated bugs. Sentinel mice placed in Kaeng Khoi cave in open cages consistently became infected with KKV, as determined by the development of neutralizing antibodies. Mice placed in arthropod-proof cages also developed antibodies, indicating the possibility of airborne transmission of KKV.


Viruses ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1773
Author(s):  
Sreelekshmy Mohandas ◽  
Pragya Dhruv Yadav ◽  
Anita Shete ◽  
Dimpal Nyayanit ◽  
Gajanan Sapkal ◽  
...  

B.1.617 is becoming a dominant Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) lineage worldwide with many sublineages, of which B.1.617.2 is designated as a variant of concern. The pathogenicity of B.1.617.2 (Delta) and B.1.617.3 lineage of SARS-CoV-2 was evaluated and compared with that of B.1, an early virus isolate with D614G mutation in a Syrian hamster model. Viral load, antibody response, and lung disease were studied. There was no significant difference in the virus shedding pattern among these variants. High levels of SARS-CoV-2 sub genomic RNA were detected in the respiratory tract of hamsters infected with the Delta variant for 14 days, which warrants further transmission studies. The Delta variant induced lung disease of moderate severity in about 40% of infected animals, which supports the attributed disease severity of the variant. Cross neutralizing antibodies were detected in animals infected with B.1, Delta, and B.1.617.3 variant, but neutralizing capacity was significantly lower with B.1.351 (Beta variant).


Author(s):  
Ronald Bangiyev ◽  
Maxim Chudaev ◽  
Donald W. Schaffner ◽  
Emanuel Goldman

Phage Phi6 is an enveloped virus considered as a possible non-pathogenic surrogate for SARS-CoV-2 and other viral pathogens in transmission studies. Higher input amounts of bacteriophage Phi6 are shown to delay and protect the phage from environmental decay, both when the phage are dried in plastic tubes, and when they are stored in saline solution at 4°C. By contrast, when bacteriophage Phi6 are placed in LB (Luria-Bertani) growth medium (instead of saline) prior to placement on the plastic surface, the influence of starting concentration on viral recovery is negligible. The protection is reflected in longer half-lives of the phage at higher concentrations compared to lower. Because experiments supporting the possibility of fomite transmission of SARS-CoV-2 and other viruses rely upon survival of infectious virus following inoculation of various surfaces, high initial amounts of input virus on a surface may generate artificially inflated survival times compared to realistic lower levels of virus that a subject would normally encounter. This is not only because there are extra half-lives to go through at the higher concentrations, but also because the half-lives themselves are extended at the higher virus concentrations. It is important to design surface drying experiments for pathogens with realistic levels of input virus, and to consider the role of the carrier and matrix if the results are to be clinically relevant. IMPORTANCE During the COVID-19 pandemic, a lot of attention has been paid to the environmental decay of SARS-CoV-2 due to proposed transmission of the virus via fomites. However, published experiments have commenced with very high virus titer inoculums, an experimental design not representative of real-life conditions. The study described here evaluated the impact of initial virus titer on environmental decay of an enveloped virus, using a non-pathogenic surrogate for transmission of SARS-CoV-2, enveloped bacteriophage Phi6. We establish that higher concentrations of virus can protect the virus from environmental decay, depending on conditions. This has important implications for stability studies of SARS-CoV-2 and other viruses. Our results point to a limitation in the fundamental methodology that has been used to attribute fomite transmission for almost all respiratory viruses.


2021 ◽  
Author(s):  
Timothee Dub ◽  
Hanna Nohynek ◽  
Lotta Hagberg ◽  
Oona Liedes ◽  
Anu Haveri ◽  
...  

Background Household transmission studies offer the opportunity to assess both secondary attack rate and persistence of SARS-CoV-2 antibodies over time. Methods We invited confirmed COVID-19 cases and their household members to attend up to four household visits with collection of nasopharyngeal and serum samples over 28 days after index case onset. We calculated secondary attack rates (SAR) based on the presence of SARS-CoV-2 nucleoprotein IgG antibodies (IgG Ab) and/or neutralizing antibodies (NAb) overall and per households. Three and six months later, we assessed the persistence of SARS-CoV-2 antibodies. Findings We recruited 39 index cases and 90 household members. Among 87 household members evaluated, SAR was 48% (n=42), including 37 symptomatic secondary cases. In total, 80/129 (62%) participants developed both IgG Ab and NAb, while three participants only developed IgG Ab. Among participants who had both IgG Ab and NAb during the initial follow-up, 68/69 (99%) and 63/70 (90%) had IgG Ab and NAb at 3 months, while at 6 months, 59/75 (79%) and 63/75 (84%) had IgG Ab and NAb, respectively. Participants who required hospital care had initially 5-fold IgG Ab concentrations compared to cases with mild symptoms and 8-fold compared to asymptomatic cases. Interpretation Following detection of a COVID-19 case in a household, other members had a high risk of becoming infected. Follow-up of participants showed strong persistence of antibodies in most cases. Funding This study was supported by THL coordinated funding for COVID-19 research (Finnish Government's supplementary budget) and by the Academy of Finland (Decision number 336431).


Sign in / Sign up

Export Citation Format

Share Document