cholinergic pathway
Recently Published Documents


TOTAL DOCUMENTS

168
(FIVE YEARS 29)

H-INDEX

28
(FIVE YEARS 3)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuya Kanauchi ◽  
Takeshi Yamamoto ◽  
Minako Yoshida ◽  
Yue Zhang ◽  
Jaemin Lee ◽  
...  

AbstractUlcerative colitis (UC) is a chronic inflammatory bowel disease. Several studies have demonstrated that α7 nicotinic acetylcholine receptors (α7nAChRs) exert anti-inflammatory effects on immune cells and nicotine suppress UC onset and relapse. Plasmacytoid dendritic cells (pDCs) reportedly accumulate in the colon of UC patients. Therefore, we investigated the pathophysiological roles of α7nAChRs on pDCs in the pathology of UC using oxazolone (OXZ)-induced Th2-type colitis with BALB/c mice. 2-deoxy-D-glucose, a central vagal stimulant suppressed OXZ colitis, and nicotine also ameliorated OXZ colitis with suppressing Th2 cytokines, which was reversed by α7nAChR antagonist methyllycaconitine. Additionally, α7nAChRs were expressed on pDCs, which were located very close to cholinergic nerve fibers in the colon of OXZ mice. Furthermore, nicotine suppressed CCL21-induced bone marrow-derived pDC migration due to Rac 1 inactivation, which was reversed by methyllycaconitine, a JAK2 inhibitor AG490 or caspase-3 inhibitor AZ-10417808. CCL21 was mainly expressed in the isolated lymphoid follicles (ILFs) of the colon during OXZ colitis. The therapeutic effect of cholinergic pathway on OXZ colitis probably through α7nAChRs on pDCs were attributed to the suppression of pDC migration toward the ILFs. Therefore, the activation of α7nAChRs has innovative therapeutic potential for the treatment of UC.


Pharmacology ◽  
2021 ◽  
pp. 1-8
Author(s):  
Alex Guazzi Rodrigues ◽  
Helton Oliveira Campos ◽  
Lucas Rios Drummond ◽  
Umeko Marubayashi ◽  
Cândido Celso Coimbra

<b><i>Aim:</i></b> The aim of this study was to assess the influence of adrenomedullary secretion on the plasma glucose, lactate, and free fatty acids (FFAs) during running exercise in rats submitted to intracerebroventricular (i.c.v.) injection of physostigmine (PHY). PHY i.c.v. was used to activate the central cholinergic system. <b><i>Methods:</i></b> Wistar rats were divided into sham-saline (sham-SAL), sham-PHY, adrenal medullectomy-SAL, and ADM-PHY groups. The plasma concentrations of glucose, lactate, and FFAs were determined immediately before and after i.c.v. injection of 20 μL of SAL or PHY at rest and during running exercise on a treadmill. <b><i>Results:</i></b> The i.c.v. injection of PHY at rest increased plasma glucose in the sham group, but not in the ADM group. An increase in plasma glucose, lactate, and FFAs mobilization from adipose tissue was observed during physical exercise in the sham-SAL group; however, the increase in plasma glucose was greater with i.c.v. PHY. Moreover, the hyperglycemia induced by exercise and PHY in the ADM group were blunted by ADM, whereas FFA mobilization was unaffected. <b><i>Conclusion:</i></b> These results indicate that there is a dual metabolic control by which activation of the central cholinergic pathway increases plasma glucose but not FFA during rest and exercise, and that this hyperglycemic response is dependent on adrenomedullary secretion.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ying-Liang Larry Lai ◽  
Kuan Chen ◽  
Tzu-Wei Lee ◽  
Chao-Wei Tso ◽  
Hui-Hsien Lin ◽  
...  

Background: Cholinergic deficiency has been suggested to associate with the abnormal accumulation of Aβ and tau for patients with Alzheimer's disease (AD). However, no studies have investigated the effect of APOE-ε4 and group differences in modulating the cholinergic basal forebrain–amygdala network for subjects with different levels of cognitive impairment. We evaluated the effect of APOE-ε4 on the cholinergic structural association and the neurocognitive performance for subjects with different levels of cognitive impairment.Methods: We used the structural brain magnetic resonance imaging scans from the Alzheimer's Disease Neuroimaging Initiative dataset. The study included cognitively normal (CN, n = 167) subjects and subjects with significant memory concern (SMC, n = 96), early mild cognitive impairment (EMCI, n = 146), late cognitive impairment (LMCI, n = 138), and AD (n = 121). Subjects were further categorized according to the APOE-ε4 allele carrier status. The main effects of APOE-ε4 and group difference on the brain volumetric measurements were assessed. Regression analyses were conducted to evaluate the associations among cholinergic structural changes, APOE-ε4 status, and cognitive performance.Results: We found that APOE-ε4 carriers in the disease group showed higher brain atrophy than non-carriers in the cholinergic pathway, while there is no difference between carriers and non-carriers in the CN group. APOE-ε4 allele carriers in the disease groups also exhibited a stronger cholinergic structural correlation than non-carriers did, while there is no difference between the carriers and non-carriers in the CN subjects. Disease subjects exhibited a stronger structural correlation in the cholinergic pathway than CN subjects did. Moreover, APOE-ε4 allele carriers in the disease group exhibited a stronger correlation between the volumetric changes and cognitive performance than non-carriers did, while there is no difference between carriers and non-carriers in CN subjects. Disease subjects exhibited a stronger correlation between the volumetric changes and cognitive performance than CN subjects did.Conclusion: Our results confirmed the effect of APOE-ε4 on and group differences in the associations with the cholinergic structural changes that may reflect impaired brain function underlying neurocognitive degeneration in AD.


Author(s):  
Qing Liu ◽  
Ming Zhong ◽  
Shiqi Yuan ◽  
Chen Niu ◽  
Xiaoying Ma

Abstract Objectives To explore the role of the central cholinergic system in amnestic mild cognitive impairment (aMCI) and mild vascular cognitive impairment (vMCI). Methods Twenty-five aMCI patients and 25 vMCI patients were enrolled in this study, and 25 healthy people were chosen as a control group. All participants performed a set of cognitive function scales and were subjected to a brain MRI. We analyzed differences in neuropsychological damage between groups, as well as the degree of brain atrophy and changes in the microstructure of central cholinergic pathways (CCP) in relation to effects on neuropsychological scores. Results (1) Regarding neuropsychological characteristics of the three groups, scores on the MoCA scale, immediate memory, delayed recall, cued recall, long time prolonged recognition, and CDR-SB of the control group were significantly better than those of the aMCI and vMCI groups. Scores on immediate memory, delayed memory, cued recall, long time delayed recognition, and Forward of Digital Span Test (FDST) in the aMCI group were lower than those in the vMCI group. Compared with the aMCI group, the vMCI group was significantly delayed in Trail Making Test (TMA)-A, TMT-B, and TMT B-A. There were no significant differences in HAMA, HAMD, MMSE, MoCA, the Boston Naming Test (BNT), language fluency or visual scale of posterior atrophy (Koedam score) between the vMCI and aMCI groups. (2) As for microstructure changes in the central cholinergic pathway, vMCI group had a decreased FA value in the cingulum (Cing) of the medial pathway, but an increased MD value in the external capsule (Excap) of the lateral pathway when compared to other two groups. Furthermore, the CingMD value of the vMCI group was higher than that of the control group, but the difference was not obvious when compared to the aMCI group. (3) Last, we researched microstructural changes to CCP, degree of brain atrophy, and neuropsychological scores by using partial correlation analysis for all participants. CingFA was negatively correlated with TMT-B, B-A, and FDST. CingMD was negatively correlated with FDST. ExcapFA was positively correlated with MMSE and Backward of BDST, while ExcapMD was negatively correlated with MMSE and MoCA. Claustrum (Claus)FA was positively related to MoCA and FDST, but was negatively related to TMT-A. ClausMD was negatively correlated with MoCA and language fluency. Koedam score was positively correlated with CDR-SB, ExcapMD, and ClausMD, but negatively correlated with MMSE score and inverse BDST. Conclusion The central cholinergic system is involved in the cognitive impairment of both aMCI and vMCI, and their mechanisms may be distinct. aMCI patients may present with primary CCP impairment while vMCI patients probably exhibit impairment secondary to vasogenic damage to the cholinergic system projection network. The lateral cholinergic pathway was more severely impaired than the medial pathway in vMCI patients, in addition to being associated with decreased executive and general cognitive functions. The damage to CCP was related to the degree of brain atrophy, and both may be involved in the development and progression of cognitive dysfunction.


2021 ◽  
Vol 7 (4) ◽  
pp. 43616-43634
Author(s):  
Maria Elvira Ribeiro Cordeiro ◽  
Flávio Klinpovous Kerppers ◽  
Luiza Ferreira Cunha ◽  
Ketllin Bragnholo ◽  
Luana Rodrigues Vasconcelos ◽  
...  

Background: Quercetin is a flavonoid widely found in plant kingdom and target of studies in pharmacological area due to its potent antinociceptive effect compared to analgesics used in conventional therapies. The aim was to evaluate its antinociceptive activity and antinociception mechanism. Methods: For this, 40 Norvegicus Wistar rats were used, divided into 4 groups: Q50 (treated with quercetin 50 mg/Kg), Q100 (treated with quercetin 100 mg/Kg), Q500 (treated with quercetin 500 mg/Kg) and Positive control (PC) without quercetin treatment), who were submitted through the pain induction methods by tail immersion and formalin in the first step to assess antinociceptive action and in the second step, tail immersion method receiving antagonists from opioid, cholinergic and nitric oxide - L-arginine to evaluate the action mechanism. Results: Quercetin antinociceptive activity was verified at the dose of 50 mg/kg and 100 mg/kg in tail immersion test after formalin injection, with better performance at the dose of 50 mg/kg. There were no statistically significant results in paw opening and capsaicin tests. Quercetin demonstrated a possible influence on opioid and cholinergic pathway, which was not observed on the nitric acid - L-arginine pathway in view of parameters tested. Conclusion: Quercetin performed the best antinociceptive activity at a dose 50 mg/kg and there was a possible influence on opioid and cholinergic pathways.


2021 ◽  
Author(s):  
Yue Li ◽  
Edmund Hollis

AbstractMotor control requires precise temporal and spatial encoding across distinct motor centers that is refined through the repetition of learning. The coordination of circuit refinement across motor regions requires modulatory input to shape circuit activity. Here we identify a role for the basocortical cholinergic pathway in the acquisition of a coordinated motor skill in mice. Targeted depletion of basal forebrain cholinergic neurons results in significant impairments in training on the rotarod task of coordinated movement. Cholinergic neuromodulation is required during training sessions as chemogenetic inactivation of cholinergic neurons also impairs task acquisition. Rotarod learning drives coordinated refinement of corticostriatal neurons arising in both medial prefrontal cortex (mPFC) and motor cortex, and we have found that cholinergic input to both motor regions is required for task acquisition. Critically, the effects of cholinergic neuromodulation are restricted to the acquisition stage, as depletion of basal forebrain cholinergic neurons after learning does not affect task execution. Our results indicate a critical role for cholinergic neuromodulation of distant cortical motor centers during coordinated motor learning.


2021 ◽  
Vol 10 (4) ◽  
pp. e29010413971
Author(s):  
Renata de Souza Sampaio ◽  
Giuliana Amanda de Oliveira ◽  
Luiz Henrique César Vasconcelos ◽  
Paula Benvindo Ferreira ◽  
Maria da Conceição Correia Silva ◽  
...  

Thymol and carvacrol are the main compounds found in Lippia mycrophylla essential oil (LM-OE) and have presented some spasmolytic effects. This work was designed to explore a possible vasorelaxant effect of LM-OE and its major monoterpenes constituents on rat pulmonary artery. For that, the organ was in vitro stimulated with phenylephrine (Phe) 3 mM and over the tonic contraction the relaxant effect of LM-OE, carvacrol and thymol was observed in both intact and denuded-endothelium. Moreover, atropine, L-NAME, indomethacin, 2,3-O-isopropylidene adenosine, H-89 and Y-27632 were incubated before the relaxant curve of thymol over Phe-tonic contraction. Furthermore, the effects of thymol on KCl 30 or 80 mM and S-(−)-Bay K8644-induced tonic contractions were evaluated, as well as its inhibitory effect on CaCl2-induced cumulative contractions. LM-OE, carvacrol and thymol presented relaxant effect on pulmonary artery, thymol was the most potent and its relaxant potency in intact-endothelium preparations was reduced by atropine, L-NAME, indomethacin, 2,3-O-isopropylidene adenosine and H-89, despite there was not change on its maximum relaxat effect. Also, the monoterpene relaxed equipotently KCl 30 or 80 mM pre-contracted pulmonary artery, antagonized CaCl2-induced cumulative contractions and relaxed S-(−)-Bay K8644 pre-contracted organ. Ultimately, thymol relaxant potency was not modified by Y-27632. Therefore, thymol acts by endothelium-dependent and independent mechanisms, possibly positively modulating the endothelial cholinergic pathway, prostanoids release and further activation of AC/PKA and also inhibiting Ca2+ influx through CaV.


Sign in / Sign up

Export Citation Format

Share Document