Akt-GSK3β Pro-survival Signaling Pathway in Cerebral Ischemic Injury

Author(s):  
W. Zhang ◽  
R.A. Stetler ◽  
J. Chen
2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Na Shi ◽  
Chongtian Zhu ◽  
Liying Li

This study was conducted to investigate the recovery of motor function in rats through the silent information regulator factor 2-related enzyme 1 (Sirt1) signal pathway-mediated rehabilitation training. Middle cerebral artery occlusion (MACO) was used to induce ischemia/reperfusion injury. The rats were subjected to no treatment (model), rehabilitation training (for 21 days), resveratrol (5 mg/kg for 21 days), and rehabilitation training plus resveratrol treatment. 24 h later, They were assessed for neurobehavioral score and motor behavior score and expression of brain derived-nerve neurotrophic factor (BDNF) and tyrosine kinase receptor B (TrkB). Compared with sham group, models had significantly higher neurobehavioral scores, balance beam, and rotary stick scores. Compared with the model group, rats in rehabilitation training and resveratrol groups had significantly reduced scores. Compared with rehabilitation training or resveratrol treatment alone, rehabilitation plus resveratrol further reduced the scores significantly. The percentage of cells expressing BDNF and TrkB and expression levels of BDNF and TrkB were similar between the model and sham groups, significantly increased in rehabilitation training and resveratrol groups, and further increased in rehabilitation training plus resveratrol group. These results indicate that rehabilitation raining plus resveratrol can significantly improve the recovery of motor function in rats after cerebral ischemic injury, which is likely related to the upregulation of the BDNF/TrkB signaling pathway.


2008 ◽  
Vol 436 (1) ◽  
pp. 62-66 ◽  
Author(s):  
Phil-Ok Koh ◽  
Jae-Hyeon Cho ◽  
Chung-Kil Won ◽  
Hyo-Jong Lee ◽  
Jin-Hee Sung ◽  
...  

2019 ◽  
Vol 30 (11) ◽  
pp. 2052-2058 ◽  
Author(s):  
Dawn F. Wolfgram

The high frequency of cognitive impairment in individuals on hemodialysis is well characterized. In-center hemodialysis patients are disproportionately affected by cognitive impairment compared with other dialysis populations, identifying hemodialysis itself as a possible factor. The pathophysiology of cognitive impairment has multiple components, but vascular-mediated cerebral injury appears to contribute based on studies demonstrating increased cerebral ischemic lesions and atrophy in brain imaging of patients on hemodialysis. Patients on hemodialysis may be at increased risk for cerebral ischemic injury disease due to vasculopathy associated with ESKD and from their comorbid diseases, such as hypertension and diabetes. This review focuses on the intradialytic cerebral hypoperfusion that can occur during routine hemodialysis due to the circulatory stress of hemodialysis. This includes a review of current methods used to monitor intradialytic cerebral perfusion and the structural and functional cognitive outcomes that have been associated with changes in intradialytic cerebral perfusion. Monitoring of intradialytic cerebral perfusion may become clinically relevant as nephrologists try to avoid the cognitive complications seen with hemodialysis. Identifying the appropriate methods to assess risk for cerebral ischemic injury and the relationship of intradialytic cerebral hypoperfusion to cognitive outcomes will help inform the decision to use intradialytic cerebral perfusion monitoring in the clinical setting as part of a strategy to prevent cognitive decline.


Sign in / Sign up

Export Citation Format

Share Document