kinase signaling pathway
Recently Published Documents


TOTAL DOCUMENTS

673
(FIVE YEARS 98)

H-INDEX

72
(FIVE YEARS 5)

2021 ◽  
Vol 118 (42) ◽  
pp. e2022649118
Author(s):  
Brian J. Earley ◽  
Ciro Cubillas ◽  
Kurt Warnhoff ◽  
Raheel Ahmad ◽  
Alan Alcantar ◽  
...  

Cadmium is an environmental pollutant and significant health hazard that is similar to the physiological metal zinc. In Caenorhabditis elegans, high zinc homeostasis is regulated by the high zinc activated nuclear receptor (HIZR-1) transcription factor. To define relationships between the responses to high zinc and cadmium, we analyzed transcription. Many genes were activated by both high zinc and cadmium, and hizr-1 was necessary for activation of a subset of these genes; in addition, many genes activated by cadmium did not require hizr-1, indicating there are at least two mechanisms of cadmium-regulated transcription. Cadmium directly bound HIZR-1, promoted nuclear accumulation of HIZR-1 in intestinal cells, and activated HIZR-1–mediated transcription via the high zinc activation (HZA) enhancer. Thus, cadmium binding promotes HIZR-1 activity, indicating that cadmium acts as a zinc mimetic to hijack the high zinc response. To elucidate the relationships between high zinc and cadmium detoxification, we analyzed genes that function in three pathways: the pcs-1/phytochelatin pathway strongly promoted cadmium resistance but not high zinc resistance, the hizr-1/HZA pathway strongly promoted high zinc resistance but not cadmium resistance, and the mek-1/sek-1/kinase signaling pathway promoted resistance to high zinc and cadmium. These studies identify resistance pathways that are specific for high zinc and cadmium, as well as a shared pathway.


2021 ◽  
pp. molcanres.0277.2021
Author(s):  
Aisha Naeem ◽  
Varsha Harish ◽  
Sophie Coste ◽  
Erika M. Parasido ◽  
Muhammad Umer Choudhry ◽  
...  

2021 ◽  
Vol 17 (7) ◽  
pp. 1426-1434
Author(s):  
Hairui Xie ◽  
Lili Zhou ◽  
Zhijiang Chen ◽  
Hong Zhao

Achondroplasia is a kind of congenital dysplasia due to the defect of endochondral ossification. Achondroplasia is considered to be a protein folding disease leading to endoplasmic reticulum stress. Endoplasmic reticulum stress may lead to disease by affecting the function and survival state of chondrocytes, but the specific mechanism requires further study. In this study, bioinformatics methods, online database mining, screening of differentially expressed genes for pathway enrichment, and interaction analysis were conducted to detect the Wnt family member 5a (Wnt5a) gene. Additionally, we designed a novel DNAzymes-based nanocomposite that can simultaneously silence Wnt5a genes in chondrocytes. The nanocomposite was composed of amino-functionalized cobalt oxyhydroxide nanoflakes modified by DNAzymes that target the Wnt5a gene. Further, we conducted in vitro experiments to verify that Wnt5a can mediate the mitogen-activated protein kinase signaling pathway through the endoplasmic reticulum stress pathway to affect the proliferation of chondrocytes.


Sign in / Sign up

Export Citation Format

Share Document