Laplace Transforms and Properties of the Fourier Transform

A formula is developed that gives the asymptotic expansion of the Fourier transform of a function whose behaviour near the origin is given by a general asymptotic series. The result is an extension of a theorem due to Olver, who obtained a kind of analogue for Fourier transforms of Watson’s lemma for Laplace transforms. The method adopted utilizes a result due to Erdelyi on Laplace transforms and depends for its success on a novel technique of evading the appearance of divergent integrals in such problems.


Author(s):  
AHRAM S. FEIGENBAUM ◽  
PETER J. GRABNER ◽  
DOUGLAS P. HARDIN

Abstract Eigenfunctions of the Fourier transform with prescribed zeros played a major role in the proof that the E8 and the Leech lattice give the best sphere packings in respective dimensions 8 and 24 by Cohn, Kumar, Miller, Radchenko and Viazovska. The functions used for a linear programming argument were constructed as Laplace transforms of certain modular and quasimodular forms. Similar constructions were used by Cohn and Gonçalves to find a function satisfying an optimal uncertainty principle in dimension 12. This paper gives a unified view on these constructions and develops the machinery to find the underlying forms in all dimensions divisible by 4. Furthermore, the positivity of the Fourier coefficients of the quasimodular forms occurring in this context is discussed.


2021 ◽  
Vol 11 (6) ◽  
pp. 2582
Author(s):  
Lucas M. Martinho ◽  
Alan C. Kubrusly ◽  
Nicolás Pérez ◽  
Jean Pierre von der Weid

The focused signal obtained by the time-reversal or the cross-correlation techniques of ultrasonic guided waves in plates changes when the medium is subject to strain, which can be used to monitor the medium strain level. In this paper, the sensitivity to strain of cross-correlated signals is enhanced by a post-processing filtering procedure aiming to preserve only strain-sensitive spectrum components. Two different strategies were adopted, based on the phase of either the Fourier transform or the short-time Fourier transform. Both use prior knowledge of the system impulse response at some strain level. The technique was evaluated in an aluminum plate, effectively providing up to twice higher sensitivity to strain. The sensitivity increase depends on a phase threshold parameter used in the filtering process. Its performance was assessed based on the sensitivity gain, the loss of energy concentration capability, and the value of the foreknown strain. Signals synthesized with the time–frequency representation, through the short-time Fourier transform, provided a better tradeoff between sensitivity gain and loss of energy concentration.


2021 ◽  
Vol 262 ◽  
pp. 117928
Author(s):  
Shusaku Nakajima ◽  
Shuhei Horiuchi ◽  
Akifumi Ikehata ◽  
Yuichi Ogawa

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Lung-Hui Chen

Abstract In this paper, we discuss how to partially determine the Fourier transform F ⁢ ( z ) = ∫ - 1 1 f ⁢ ( t ) ⁢ e i ⁢ z ⁢ t ⁢ 𝑑 t , z ∈ ℂ , F(z)=\int_{-1}^{1}f(t)e^{izt}\,dt,\quad z\in\mathbb{C}, given the data | F ⁢ ( z ) | {\lvert F(z)\rvert} or arg ⁡ F ⁢ ( z ) {\arg F(z)} for z ∈ ℝ {z\in\mathbb{R}} . Initially, we assume [ - 1 , 1 ] {[-1,1]} to be the convex hull of the support of the signal f. We start with reviewing the computation of the indicator function and indicator diagram of a finite-typed complex-valued entire function, and then connect to the spectral invariant of F ⁢ ( z ) {F(z)} . Then we focus to derive the unimodular part of the entire function up to certain non-uniqueness. We elaborate on the translation of the signal including the non-uniqueness associates of the Fourier transform. We show that the phase retrieval and magnitude retrieval are conjugate problems in the scattering theory of waves.


Author(s):  
Angela A. Albanese ◽  
Claudio Mele

AbstractIn this paper we continue the study of the spaces $${\mathcal O}_{M,\omega }({\mathbb R}^N)$$ O M , ω ( R N ) and $${\mathcal O}_{C,\omega }({\mathbb R}^N)$$ O C , ω ( R N ) undertaken in Albanese and Mele (J Pseudo-Differ Oper Appl, 2021). We determine new representations of such spaces and we give some structure theorems for their dual spaces. Furthermore, we show that $${\mathcal O}'_{C,\omega }({\mathbb R}^N)$$ O C , ω ′ ( R N ) is the space of convolutors of the space $${\mathcal S}_\omega ({\mathbb R}^N)$$ S ω ( R N ) of the $$\omega $$ ω -ultradifferentiable rapidly decreasing functions of Beurling type (in the sense of Braun, Meise and Taylor) and of its dual space $${\mathcal S}'_\omega ({\mathbb R}^N)$$ S ω ′ ( R N ) . We also establish that the Fourier transform is an isomorphism from $${\mathcal O}'_{C,\omega }({\mathbb R}^N)$$ O C , ω ′ ( R N ) onto $${\mathcal O}_{M,\omega }({\mathbb R}^N)$$ O M , ω ( R N ) . In particular, we prove that this isomorphism is topological when the former space is endowed with the strong operator lc-topology induced by $${\mathcal L}_b({\mathcal S}_\omega ({\mathbb R}^N))$$ L b ( S ω ( R N ) ) and the last space is endowed with its natural lc-topology.


Sign in / Sign up

Export Citation Format

Share Document