Noncoding RNAs Are New Players in Chronic Pain

2019 ◽  
pp. 157-167
Author(s):  
Shaogen Wu ◽  
Yuan-Xiang Tao
Keyword(s):  
2014 ◽  
Vol 121 (2) ◽  
pp. 409-417 ◽  
Author(s):  
Brianna Marie Lutz ◽  
Alex Bekker ◽  
Yuan-Xiang Tao

Abstract Chronic pain, a common clinical symptom, is often treated inadequately or ineffectively in part due to the incomplete understanding of molecular mechanisms that initiate and maintain this disorder. Newly identified noncoding RNAs govern gene expression. Recent studies have shown that peripheral noxious stimuli drive expressional changes in noncoding RNAs and that these changes are associated with pain hypersensitivity under chronic pain conditions. This review first presents current evidence for the peripheral inflammation/nerve injury–induced change in the expression of two types of noncoding RNAs, microRNAs, and Kcna2 antisense RNA, in pain-related regions, particularly in the dorsal root ganglion. The authors then discuss how peripheral noxious stimuli induce such changes. The authors finally explore potential mechanisms of how expressional changes in dorsal root ganglion microRNAs and Kcna2 antisense RNA contribute to the development and maintenance of chronic pain. An understanding of these mechanisms may propose novel therapeutic strategies for preventing and/or treating chronic pain.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Yuanyuan Li ◽  
Chengyu Yin ◽  
Boyu Liu ◽  
Huimin Nie ◽  
Jie Wang ◽  
...  

Abstract Background Paclitaxel is a widely prescribed chemotherapy drug for treating solid tumors. However, paclitaxel-induced peripheral neuropathy (PIPN) is a common adverse effect during paclitaxel treatment, which results in sensory abnormalities and neuropathic pain among patients. Unfortunately, the mechanisms underlying PIPN still remain poorly understood. Long noncoding RNAs (lncRNAs) are novel and promising targets for chronic pain treatment, but their involvement in PIPN still remains unexplored. Methods We established a rat PIPN model by repetitive paclitaxel application. Immunostaining, RNA sequencing (RNA-Seq) and bioinformatics analysis were performed to study glia cell activation and explore lncRNA/mRNA expression profiles in spinal cord dorsal horn (SCDH) of PIPN model rats. qPCR and protein assay were used for further validation. Results PIPN model rats developed long-lasting mechanical and thermal pain hypersensitivities in hind paws, accompanied with astrocyte and microglia activation in SCDH. RNA-Seq identified a total of 814 differentially expressed mRNAs (DEmRNA) (including 467 upregulated and 347 downregulated) and 412 DElncRNAs (including 145 upregulated and 267 downregulated) in SCDH of PIPN model rats vs. control rats. Functional analysis of DEmRNAs and DElncRNAs identified that the most significantly enriched pathways include immune/inflammatory responses and neurotrophin signaling pathways, which are all important mechanisms mediating neuroinflammation, central sensitization, and chronic pain. We further compared our dataset with other published datasets of neuropathic pain and identified a core set of immune response-related genes extensively involved in PIPN and other neuropathic pain conditions. Lastly, a competing RNA network analysis of DElncRNAs and DEmRNAs was performed to identify potential regulatory networks of lncRNAs on mRNA through miRNA sponging. Conclusions Our study provided the transcriptome profiling of DElncRNAs and DEmRNAs and uncovered immune and inflammatory responses were predominant biological events in SCDH of the rat PIPN model. Thus, our study may help to identify promising genes or signaling pathways for PIPN therapeutics.


2000 ◽  
Vol 27 (10) ◽  
pp. 834-841 ◽  
Author(s):  
O. Plesh ◽  
D. Curtis ◽  
J. Levine ◽  
W. D. Mccall Jr

Ob Gyn News ◽  
2005 ◽  
Vol 40 (10) ◽  
pp. 34
Author(s):  
SHERRY BOSCHERT
Keyword(s):  

2005 ◽  
Vol 38 (13) ◽  
pp. 12
Author(s):  
COLIN NELSON
Keyword(s):  

2006 ◽  
Vol 39 (19) ◽  
pp. 18
Author(s):  
ROXANNE NELSON
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document