Impact of Distributed Energy Resource Penetrations on Smart Grid Adaptive Energy Conservation and Optimization Solutions

Author(s):  
Moein Manbachi
2021 ◽  
Vol 23 (3) ◽  
pp. 61-65
Author(s):  
Jasmina Imamović ◽  
Sanda Midžić Kurtagić ◽  
Esma Manić ◽  

The paper presents an analysis of the current situation regarding the development of an electricity distribution network and potential for a smart grid development in the selected pilot region of Bosnia and Herzegovina. Apart from the policy framework assessment, several indicator based criteria were included in the scope of analysis: share of renewable energy and renewable energy as distributed energy resource, total share of distributed energy resources, a number of installed smart meters for measuring electricity consumption, a number of charging stations for electric vehicles, energy storage capacities and technological development. The overall analysis of the assessment has been done by normalization of the calculated values of the indicators on a scale of 1-5. The indicators have showed that the smart grid sector in the Region is currently underdeveloped.


2019 ◽  
Author(s):  
Kelsey A Horowitz ◽  
Zachary Peterson ◽  
Michael H Coddington ◽  
Fei Ding ◽  
Benjamin O Sigrin ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2773
Author(s):  
Petros Siritoglou ◽  
Giovanna Oriti ◽  
Douglas L. Van Bossuyt

This paper presents a user-friendly design method for accurately sizing the distributed energy resources of a stand-alone microgrid to meet the critical load demands of a military, commercial, industrial, or residential facility when utility power is not available. The microgrid combines renewable resources such as photovoltaics (PV) with an energy-storage system to increase energy security for facilities with critical loads. The design method’s novelty complies with IEEE Standards 1562 and 1013, and addresses resilience, which is not taken into account in existing design methods. Several case studies simulated with a physics-based model validate the proposed design method and demonstrate how resilience can be included in the design process. Additionally, the design and the simulations were validated by 24 h laboratory experiments conducted on a microgrid assembled using commercial off-the-shelf components.


Sign in / Sign up

Export Citation Format

Share Document