Analiza potencijala za uvođenje sistema pametnih mreža u Bosni i Hercegovini

2021 ◽  
Vol 23 (3) ◽  
pp. 61-65
Author(s):  
Jasmina Imamović ◽  
Sanda Midžić Kurtagić ◽  
Esma Manić ◽  

The paper presents an analysis of the current situation regarding the development of an electricity distribution network and potential for a smart grid development in the selected pilot region of Bosnia and Herzegovina. Apart from the policy framework assessment, several indicator based criteria were included in the scope of analysis: share of renewable energy and renewable energy as distributed energy resource, total share of distributed energy resources, a number of installed smart meters for measuring electricity consumption, a number of charging stations for electric vehicles, energy storage capacities and technological development. The overall analysis of the assessment has been done by normalization of the calculated values of the indicators on a scale of 1-5. The indicators have showed that the smart grid sector in the Region is currently underdeveloped.

Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 67
Author(s):  
Rakkyung Ko ◽  
Sung-Kwan Joo

Virtual power plants (VPPs) have been widely researched to handle the unpredictability and variable nature of renewable energy sources. The distributed energy resources are aggregated to form into a virtual power plant and operate as a single generator from the perspective of a system operator. Power system operators often utilize the incentives to operate virtual power plants in desired ways. To maximize the revenue of virtual power plant operators, including its incentives, an optimal portfolio needs to be identified, because each renewable energy source has a different generation pattern. This study proposes a stochastic mixed-integer programming based distributed energy resource allocation method. The proposed method attempts to maximize the revenue of VPP operators considering market incentives. Furthermore, the uncertainty in the generation pattern of renewable energy sources is considered by the stochastic approach. Numerical results show the effectiveness of the proposed method.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4367
Author(s):  
Hyun-Tae Kim ◽  
Jungju Lee ◽  
Myungseok Yoon ◽  
Moon-Jeong Lee ◽  
Namhun Cho ◽  
...  

Recently, the demand for electricity has been increasing worldwide. Thus, more attention has been paid to renewable energy. There are acceptable limits during the integration of renewable energy into distribution systems because there are many effects of integrating renewable energy. Unlike previous studies that have estimated the distributed energy resource (DER) hosting capacity using the standard high voltage and probability approach, in this study, we propose an algorithm to estimate the DER hosting capacity by considering DER outages due to abrupt disturbances or uncertainties based on the generator ramp rate and voltage stability, which involves analysis of the low-voltage aspects. Furthermore, this method does not involve a complicated process or need large amounts of data to estimate the DER hosting capacity because it requires only minimum data for power flow. The proposed algorithm was applied to the IEEE-33 radial distribution system. According to the DER capacity, a voltage stability analysis based on continuation power flow (CPF) was conducted in a case of DER outage to estimate the DER hosting capacity in this case study. Thus, the DER hosting capacity was estimated for the IEEE-33 radial distribution system.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 645
Author(s):  
Jihun Jung ◽  
Keon Baek ◽  
Eunjung Lee ◽  
Woong Ko ◽  
Jinho Kim

Various incentive schemes are being implemented to improve the economic return of distributed energy resources (DERs). Accordingly, research on the optimal capacity design and operations of photovoltaic (PV) power generation and energy storage systems (ESSs) is important to ensure the economic efficiency of DERs. This study presents the models of optimal capacity and facility operation methods based on long-term operational changes of DERs in a building with self-consumption. Key policy variables are derived for a renewable energy system. We first analyzed the operating environments of the DERs according to the basic types of PVs and ESSs, and by examining the detailed benefit structure of a special rate for renewable energy. The optimal capacity of PVs and ESSs with the lowest net cost was estimated using various parameters in consideration of long-term operations (~15 years), and by setting rules for a special rate for renewable energy. It was confirmed that the combined use of peak and rate reductions constituted the most economical operational approach. A case study confirmed the economic sensitivity of cost and benefit analyses based on actual load data. Correspondingly, it is inferred that this study will identify core policy variables that can aid decision-making in the long-term perspective.


2019 ◽  
Author(s):  
Kelsey A Horowitz ◽  
Zachary Peterson ◽  
Michael H Coddington ◽  
Fei Ding ◽  
Benjamin O Sigrin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document