Balancing Energy Efficiency and Heat Wave Resilience in Building Design

Author(s):  
Morshed Alam ◽  
Jay Sanjayan ◽  
Patrick X.W. Zou
2018 ◽  
Vol 3 (10) ◽  
pp. 9
Author(s):  
Mohd Najib Mohd Salleh ◽  
Mohd Zin Kandar ◽  
Siti Rasidah Md Sakip

Increased energy demand end to the world grew by 39% between 1990 to 2008 and further increased by 40% between 2007 to 2030. Energy consumption in buildings has been identified to contribute up to 40% of the total world. Through the selection of methods and the right strategy will reduce the problem of increase energy in buildings. Based on the theory of energy efficiency developed it can achieve through three main factors; a) building design; b) design of services; c) user behavior. This paper aims to discuss methods to benchmark user perception on energy efficiency in school buildings.Keywords: Benchmarking; energy efficiency; school building; user perceptioneISSN 2398-4279 © 2018. The Authors. Published for AMER ABRA cE-Bs by e-International Publishing House, Ltd., UK. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer–review under responsibility of AMER (Association of Malaysian Environment-Behaviour Researchers), ABRA (Association of Behavioural Researchers on Asians) and cE-Bs (Centre for Environment-Behaviour Studies), Faculty of Architecture, Planning & Surveying, Universiti Teknologi MARA, Malaysia.


2012 ◽  
Vol 253-255 ◽  
pp. 658-669 ◽  
Author(s):  
Serik Tokbolat ◽  
Raikhan Tokpatayeva ◽  
Sarim Al-Zubaidy

There is a distinct lack of building design literature specific to the Central Asian region. This perhaps, could be one of reasons for the only slight improvement of new building designs and construction. One does observe the highly glazed buildings are a particularly popular feature here in Astana, as like anywhere else in the world. However, excessively glazed surfaces combined with the weather extremes leads to adverse internal conditions and skyrocketing energy bills. The work presented in this paper is a part of continuing efforts to identify analyze and promote the design of ‘low energy, green and sustainable buildings with special reference to the Kazakhstan locality. In the present context, low energy buildings’ refers to buildings inherently low energy consuming by careful passive design, utilizing intelligent building technologies to automate building services and minimize wastage of energy and by incorporation of renewable technologies for its energy supply. Demonstration of improved environmental conditions and impact on energy savings will be outlined through a cause study incorporating application of passive design approach and detailed computational fluid dynamics (CFD) analysis for an existing building complex. The results indicated that there is a considerable influence of passive design and orientation on energy efficiency, wind comfort and safety.


2014 ◽  
Vol 587-589 ◽  
pp. 283-286 ◽  
Author(s):  
Mei Zhang

According to the current application situation and domestic energy of our current building energy efficiency design analysis software, in view of the current traditional energy-saving design method can't meet the need of practical problems, put forward the BIM (building information modeling) analysis technology and building energy consumption are combined, anew design method for energy saving building. Application of BIM technology to create virtual building model contains all the information architecture, the virtual building model into the building energy analysis software, identification, automatic conversion and analyzing a large number of construction data information includes in the model, which is convenient to get the building energy consumption analysis.


Buildings ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 88
Author(s):  
Shobhit Chaturvedi ◽  
Elangovan Rajasekar ◽  
Sukumar Natarajan

Operational uncertainties play a critical role in determining potential pathways to reduce the building energy footprint in the Global South. This paper presents the application of a non-dominated sorting genetic (NSGA II) algorithm for multi-objective building design optimization under operational uncertainties. A residential building situated in a mid-latitude steppe and desert region (Köppen climate classification: BSh) in the Global South has been selected for our investigation. The annual building energy consumption and the total number of cooling setpoint unmet hours (h) were assessed over 13,122 different energy efficiency measures. Six Pareto optimal solutions were identified by the NSGA II algorithm. Robustness of Pareto solutions was evaluated by comparing their performance sensitivity over 162 uncertain operational scenarios. The final selection for the most optimal energy efficiency measure was achieved by formulating a robust multi-criteria decision function by incorporating performance, user preference, and reliability criteria. Results from this robust approach were compared with those obtained using a deterministic approach. The most optimal energy efficiency measure resulted in 9.24% lower annual energy consumption and a 45% lower number of cooling setpoint unmet h as compared to the base case.


2013 ◽  
Vol 368-370 ◽  
pp. 1318-1321
Author(s):  
Xin Bin Wang ◽  
Jia Ping Liu ◽  
Yu Fu

This paper briefly analyzes the structure and conservation approaches of building energy consumption, analyzes the forming reason and influence factors of heating and air-conditioning energy consumption and proposes the passive energy conservation designing strategies of low energy consumption building. Through the passive methods of building design, envelop enclosure and planning landscape, the goal of last year building low energy conservation can be achieved.


Sign in / Sign up

Export Citation Format

Share Document