Application of heterogeneous catalysis in the development of environmentally benign synthetic processes

2022 ◽  
pp. 81-83
Author(s):  
Béla Török ◽  
Christian Schäfer ◽  
Anne Kokel

2020 ◽  
Vol 5 (4) ◽  
pp. 190-196
Author(s):  
DALILA BOUSBA ◽  
CHAFIA SOBHI ◽  
AMNA ZOUAOUI ◽  
SOUAD BOUASLA

Biomass-derived porous carbons are attractive materials for the synthesis of carbon-supported catalysts, carbonaceous catalysts are environmentally benign and could provide an important competitive advantage as compared to existing heterogeneous catalysts, however the surface properties of carbon materials and excellent physical and chemical properties are compatible with diverse catalysis reactions including organic transformations. Currently, activated carbons are one of well known carbonaceous materials for their catalytic properties and for use as support in heterogeneous catalysis. The supported catalysts have been successfully used in the chemical industries for a long time, in which carbon supported catalysts have allowed to a new chemical catalytic process, on the other hand Heterogeneous catalysis plays a key role in the manufacture of essential products in different fields. In this paper, we present a comparative study, between two main different methods for activated carbons (ACs) preparation namely, physical and chemical activations. Latter was prepared from agro-industrial biomass and used as a support to prepare monometallic (dry impregnation and excess impregnation) and bimetallic catalyst (successive impregnation and co impregnation).



Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2756
Author(s):  
Sascha Keßler ◽  
Elrike R. Reinalter ◽  
Johannes Schmidt ◽  
Helmut Cölfen

The tetramethylammonium hydroxide (TMAH)-controlled alkaline etching of nickel hexacyanoferrate (NiHCF) mesocrystals is explored. The alkaline etching enables the formation of hollow framework structures with an increased surface area, the exposure of active Ni and Fe sites and the retention of morphology. The ambient reaction conditions enable the establishment of a sustainable production. Our work reveals novel perspectives on the eco-friendly synthesis of hollow and colloidal superstructures for the efficient degradation of the organic contaminants rhodamine-B and bisphenol-A. In the case of peroxomonosulfate (PMS)-mediated bisphenol-A degradation, the rate constant of the etched mesoframes was 10,000 times higher indicating their significant catalytic activity.





2021 ◽  
Author(s):  
Василий Садовников

This monograph is a continuation of the monograph by V.V. Sadovnikov. Lateral interaction. Moscow 2006. Publishing house "Anta-Eco", 2006. ISBN 5-9730-0017-6. In this work, the foundations of the theory of heterogeneous catalysis and the theory of chemisorption are more easily formulated. The book consists of two parts, closely related to each other. These are the theoretical foundations of heterogeneous catalysis and chemisorption. In the theory of heterogeneous catalysis, an experiment is described in detail, which must be carried out in order to isolate the stages of a catalytic reaction, to find the stoichiometry of each of the stages. This experiment is based on the need to obtain the exact value of the specific surface area of the catalyst, the number of centers at which the reaction proceeds, and the output curves of each of the reaction products. The procedures for obtaining this data are described in detail. Equations are proposed and solved that allow calculating the kinetic parameters of the nonequilibrium stage and the thermodynamic parameters of the equilibrium stage. The description of the quantitative theory of chemisorption is based on the description of the motion of an atom along a crystal face. The axioms on which this mathematics should be based are formulated, the mathematical apparatus of the theory is written and the most detailed instructions on how to use it are presented. The first axiom: an atom, moving along the surface, is present only in places with minima of potential energy. The second axiom: the face of an atom is divided into cells, and the position of the atom on the surface of the face is set by one parameter: the cell number. The third axiom: the atom interacts with the surrounding material bodies only at the points of minimum potential energy. The fourth axiom: the solution of the equations is a map of the arrangement of atoms on the surface. The fifth axiom: quantitative equations are based on the concept of a statistically independent particle. The formation energies of these particles and their concentration are calculated by the developed program. The program based on these axioms allows you to simulate and calculate the interaction energies of atoms on any crystal face. The monograph is intended for students, post-graduate students and researchers studying work and working in petrochemistry and oil refining.



Sign in / Sign up

Export Citation Format

Share Document