lateral interaction
Recently Published Documents


TOTAL DOCUMENTS

193
(FIVE YEARS 32)

H-INDEX

27
(FIVE YEARS 2)

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7149
Author(s):  
Shengjie Sun ◽  
Jianwei Jiang ◽  
Shuyou Wang ◽  
Jianbing Men ◽  
Mei Li ◽  
...  

The Selective Laser Melting (SLM) technique has attracted attention in a wide range of manufacturing research areas, including the defense industry because of its high efficiency and good consistency of manufactured material properties. Shaped charge liner is the crucial unit in the shaped charge warhead. However, jet performance formed by SLM-produced liner remains to be studied systematically. In the present research work, the SLM technique was applied to manufacture CuSn10 shaped charge liners. Casted CuSn10 liners were also fabricated using the classical turning method for comparison. The grain size of the SLM-produced liner was found to be much smaller than the machined liner due to the rapid heating and cooling rate during the SLM manufacturing process. This contributed to improved jet performance. A flash X-ray photography system was applied to capture jet stretching appearances. Necking appears at the jet tip formed by the machined liner, while the jet formed by the SLM-produced liner remains continuous. Penetration test results show that the penetration depth of the jet formed by the SLM-produced liner is around 27% larger than that formed by the machined liner. Segments along the sidewall of the penetration tunnels were selected for in-depth micro analysis. Energy dispersed spectrum (EDS) surface scanning results indicate the composition at the side wall of the penetrated tunnel. Metallurgical microscope was applied to distinguish four different phase zones of the target. The width of these different zones indicates the severity of the lateral interaction between the jet and target, which can be adopted to evaluate jet penetration capability. The present study analyzes the factors that influence jet performances and proves that SLM technology is well-adapted in the manufacturing of shaped charge liners.


Author(s):  
Yuriy P. BORONENKO ◽  
◽  
Aleksandr V. TRET’YAKOV ◽  
Rustam V. RAKHIMOV ◽  
Mariya V. ZIMAKOVA ◽  
...  

Objective: To develop the method to monitor the technical condition of the railway track. Me-thods: A strain-gauge wheel pair is used for continuous recording of vertical and lateral interaction forces in a dynamic wheel–rail system. Results: Stability margin factors of a wagon relative to de-railment have been determined and the defective (prone to derailment) sections of a railway track have been identified with the exact identification of their location (GPS coordinates) on the map using navigation devices. Practical importance: The developed monitoring method makes it possi-ble to promptly re¬gister and eliminate railway track defects


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Medha Sharma ◽  
Tao Jiang ◽  
Zi Chen Jiang ◽  
Carlos E Moguel-Lehmer ◽  
Tony Harris

Structures and machines require smoothening of raw materials. Self-organized smoothening guides cell and tissue morphogenesis, and is relevant to advanced manufacturing. Across the syncytial Drosophila embryo surface, smooth interfaces form between expanding Arp2/3-based actin caps and surrounding actomyosin networks, demarcating the circumferences of nascent dome-like compartments used for pseudo-cleavage. We found that forming a smooth and circular boundary of the surrounding actomyosin domain requires Arp2/3 in vivo. To dissect the physical basis of this requirement, we reconstituted the interacting networks using node-based models. In simulations of actomyosin networks with local clearances in place of Arp2/3 domains, rough boundaries persisted when myosin contractility was low. With addition of expanding Arp2/3 network domains, myosin domain boundaries failed to smoothen, but accumulated myosin nodes and tension. After incorporating actomyosin mechanosensitivity, Arp2/3 network growth locally induced a surrounding contractile actomyosin ring that smoothened the interface between the cytoskeletal domains, an effect also evident in vivo. In this way, a smooth structure can emerge from the lateral interaction of irregular active materials.


2021 ◽  
Vol 78 ◽  
pp. 102971
Author(s):  
Xiaoyu Dong ◽  
Wangcheng Zhang ◽  
Hodjat Shiri ◽  
Mark F. Randolph

2021 ◽  
Vol 13 (7) ◽  
pp. 168781402110330
Author(s):  
Kai Zhang ◽  
Zhihu Wei ◽  
Yangyi Chen

The contact mechanism for joint surfaces is important for predicting the loading process and dynamic properties of precision machinery products. A multiasperity model considering the lateral interaction and coalescence of contact regions with oblique asperity contact, the interacting and coalescing Hertzian asperities (ICHA) model, is introduced in this work. Contact angle [Formula: see text] and radius of curvature [Formula: see text] are vital parameters that are directly calculated based on grid points measured from the milling and grinding surfaces. Numerical simulations of [Formula: see text] and [Formula: see text] were analysed. The results show that the proposed model is more effective at improving the contact area versus force relationship than various asperity models for low and middle contact forces. [Formula: see text] and [Formula: see text] follow a Gaussian distribution. Because of the existence of coalescence, they decrease with increasing contact force. Furthermore, the [Formula: see text] and [Formula: see text] in the startup phase are crucial data that can be used to judge the effects of oblique asperity contact. They are greatly influenced by fractal dimension [Formula: see text] and fractal roughness G. From the comparisons with the surfaces generated by Weierstrass-Mandelbrot function, it is suggested that to obtain an accurate contact prediction in the loading process, oblique contact is as important as lateral interaction and coalescence.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Zaineb Elqahtani ◽  
Mohamed Ben Yahia ◽  
Nada Alfryyan ◽  
Shatha Aldaghfaq ◽  
Fatma Aouaini

A quartz crystal adsorbent functionalized with two promising porphyrins (the 5,10,15,20-tetrakis(4-tolylphenyl)porphyrin and the 5,10,15,20-tetraphenylporphyrin) was applied for the investigation of the adsorption phenomenon of aluminum chloride, iron chloride, and indium chloride. The aim is to prove new insights about the appropriate adsorption materials for metalloporphyrin fabrication. The equilibrium isotherms were measured at five adsorption temperatures (from 290 to 330 K) through the microbalance (QCM) method. The discussion of the experimental observations indicated that the adsorption of the aluminum chloride and the iron chloride was performed via a monolayer process. On contrary, the participation of the chloride ions in the double-layer adsorption of the indium chloride was explained by the layer-by-layer process. Overall, the statistical physics modeling of the experimental curves indicated that the number of ions per adsorbent site n was found inferior to 1 for all the adsorption systems (multi-interaction process for the three ions). Interestingly, the physicochemical investigation of the three adopted models showed that the complexation mechanism of the tested porphyrins was an endothermic process since the two steric parameters ( n and P M ) increased with the rise of the temperature. The FeCl3 curves were discussed via a monolayer adsorption model which includes the parameters a and b (lateral interaction description), indicating the lowest stability of the formed iron-porphyrin complex. The energetic study showed that the adsorption energies ∣ − Δ E 1 / 2 ∣ of AlCl3 on H2TTPP and H2TPP are superior to 40 kJ/mol (chemical adsorption mechanism), whereas the adsorption mechanisms of FeCl3 and InCl3 took place via a physical process since they presented adsorption energy values lower than 40 kJ/mol.


2021 ◽  
Author(s):  
Julie Linnéa Sehested Gresseth ◽  
Per Terje Osmundsen ◽  
Gwenn Péron-Pinvidic

<p>Detachment fault systems recording displacements in the order of 10s to 100s of km remain poorly understood compared to smaller scale normal faults. The evolutionary models developed for the growth and interaction of Andersonian-type faults are not fully applicable to these large-magnitude systems. Consequently, the associated basins - the so-called supradetachment basins - are still poorly understood compared to extensional half-graben basins.</p><p>Numerical and analogue 2D modelling have shed light on the mechanisms of footwall back-rotation during progressive extension (rolling hinge model; e.g. Lavier et al., 1999) but the along-strike evolution of such large-scale detachment systems remain poorly understood. It has been proposed that with increasing amounts of extension, detachment faulting favors formation of isostatically induced, longitudinal and transverse folds and consequently basin inversion in the area of maximum displacement (e.g. Kapp et al., 2008; Osmundsen & Péron-Pinvidic, 2018). The 4D configuration of the associated supradetachment basins is then controlled by the growth and (potential) lateral linkage of such faults - which may result in complex geometries.</p><p>In this study, we use interpretation of 3D- and 2D seismic reflection data from the necking domain of the Mid-Norwegian rifted margin to discuss the effects of lateral interaction and linkage of extensional detachment faults. The study area demonstrates how successive incision of such master faults may induce a complex structural relief in response to extensional detachment faulting and folding. In the inner parts of the south Vøring and northeastern Møre basins, the Klakk and Main Møre Fault Complexes form the outer necking breakaway complex and the western boundary of the Frøya High. The central Frøya High contains remnants of a metamorphic core complex, which we interpret as an extension parallel turtleback-structure. The turtleback is flanked two main synclinal depocenters constituting a supradetachment basin, whose location corresponds to the crustal taper break associated with the outer necking domain. We attribute the turtleback exhumation to Late Jurassic-Early Cretaceous detachment faulting along the Klakk and Main Møre Fault Complexes. Southwest of the Frøya High, the supradetachment basin links the Frøya High Turtleback with the core complex previously interpreted for the Gossa High, near where the Main Møre Fault Complex incises the Slørebotn detachment. The Slørebotn Subbasin consequently forms a synclinal keel basin with rafted blocks, a structural configuration which is recognizable also north of the ‘Frøya High Turtleback’ towards the Halten Terrace. We find that the pre-rift structural template and crustal heterogeneity facilitated differential supradetachment basin configuration during and after Late Jurassic-Early Cretaceous rifting, and that the supradetachment basin architecture was likely controlled by localized isostatic uplift, lateral linkage and successive incision of large-magnitude normal faults.</p>


2021 ◽  
Vol 8 ◽  
Author(s):  
Md. Iqbal Mahmood ◽  
Adolfo B. Poma ◽  
Kei-ichi Okazaki

Coarse-grained (CG) molecular dynamics (MD) simulations allow us to access much larger length and time scales than atomistic MD simulations, providing an attractive alternative to the conventional simulations. Based on the well-known MARTINI CG force field, the recently developed Gō-MARTINI model for proteins describes large-amplitude structural dynamics, which has not been possible with the commonly used elastic network model. Using the Gō-MARTINI model, we conduct MD simulations of the F-BAR Pacsin1 protein on lipid membrane. We observe that structural changes of the non-globular protein are largely dependent on the definition of the native contacts in the Gō model. To address this issue, we introduced a simple cutoff scheme and tuned the cutoff distance of the native contacts and the interaction strength of the Lennard-Jones potentials in the Gō-MARTINI model. With the optimized Gō-MARTINI model, we show that it reproduces structural fluctuations of the Pacsin1 dimer from atomistic simulations. We also show that two Pacsin1 dimers properly assemble through lateral interaction on the lipid membrane. Our work presents a first step towards describing membrane remodeling processes in the Gō-MARTINI CG framework by simulating a crucial step of protein assembly on the membrane.


2021 ◽  
Author(s):  
Medha Sharma ◽  
Tao Jiang ◽  
Zi Chen Jiang ◽  
Carlos E. Moguel-Lehmer ◽  
Tony J. C. Harris

AbstractStructures and machines require smoothening of raw materials. Self-organized smoothening guides cell and tissue morphogenesis, and is relevant to advanced manufacturing. Across the syncytial Drosophila embryo surface, smooth interfaces form between expanding Arp2/3-based actin caps and surrounding actomyosin networks, demarcating the circumferences of nascent dome-like compartments used for pseudo-cleavage. We found that smoothening of the actomyosin interfaces requires Arp2/3 in vivo. To dissect the physical basis of this requirement, we reconstituted the interacting networks using node-based models. When actomyosin networks were simulated with clearances instead of Arp2/3 networks, rough boundaries persisted with low levels of myosin contractility. With addition of expanding Arp2/3 networks, network-network interfaces failed to smoothen, but accumulated myosin nodes and tension. After incorporating actomyosin mechanosensitivity, Arp2/3 network growth induced local contractility and smoothening of the interfaces, effects also evident in vivo. In this way, a smooth structure can emerge from the lateral interaction of irregular starting materials.


Sign in / Sign up

Export Citation Format

Share Document