Muscular load compensation patterns in patients with knee osteo-arthritis

Author(s):  
Dinesh Bhatia
1985 ◽  
Vol 59 (6) ◽  
pp. 1947-1954 ◽  
Author(s):  
M. Lopata ◽  
E. Onal ◽  
G. Cromydas

To assess respiratory neuromuscular function and load compensating ability in patients with chronic airway obstruction (CAO), we studied eight stable patients with irreversible airway obstruction during hyperoxic CO2 rebreathing with and without a 17 cmH2O X l-1 X s flow-resistive inspiratory load (IRL). Minute ventilation (VE), transdiaphragmatic pressure (Pdi), and diaphragmatic electromyogram (EMGdi) were monitored. Pdi and EMGdi were obtained via a single gastroesophageal catheter with EMGdi being quantitated as the average rate of rise of inspiratory (moving average) activity. Based on the effects of IRL on the Pdi response to CO2 [delta Pdi/delta arterial CO2 tension (PaCO2)] and the change in Pdi for a given change in EMGdi (delta Pdi/delta EMGdi) during rebreathing, two groups could be clearly identified. Four patients (group A) were able to increase delta Pdi/delta PaCO2 and delta Pdi/delta EMGdi, whereas in the other four (group B) the IRL responses decreased. All group B patients were hyperinflated having significantly greater functional residual capacity (FRC) and residual volume than group A. In addition the IRL induced percent change in delta Pdi/delta PaCO2, and delta VE/delta PaCO2 was negatively correlated with lung volume so that in the hyperinflated group B the higher the FRC the greater was the decrease in Pdi response due to IRL. In both groups the greater the FRC the greater was the decrease in the ventilatory response to loading. Patients with CAO, even with severe airways obstruction, can effect load compensation by increasing diaphragmatic force output, but the presence of increased lung volume with the associated shortened diaphragm prevents such load compensation.


2020 ◽  
Vol 6 ◽  
Author(s):  
Julia L. Wagner ◽  
Andreas Gienger ◽  
Charlotte Stein ◽  
Philipp Arnold ◽  
Cristina Tarín ◽  
...  

2014 ◽  
Vol 116 (8) ◽  
pp. 1006-1016 ◽  
Author(s):  
Hsiu-Wen Tsai ◽  
Paul W. Davenport

Respiratory load compensation is a sensory-motor reflex generated in the brain stem respiratory neural network. The nucleus of the solitary tract (NTS) is thought to be the primary structure to process the respiratory load-related afferent activity and contribute to the modification of the breathing pattern by sending efferent projections to other structures in the brain stem respiratory neural network. The sensory pathway and motor responses of respiratory load compensation have been studied extensively; however, the mechanism of neurogenesis of load compensation is still unknown. A variety of studies has shown that inhibitory interconnections among the brain stem respiratory groups play critical roles for the genesis of respiratory rhythm and pattern. The purpose of this study was to examine whether inhibitory glycinergic neurons in the NTS were activated by external and transient tracheal occlusions (ETTO) in anesthetized animals. The results showed that ETTO produced load compensation responses with increased inspiratory, expiratory, and total breath time, as well as elevated activation of inhibitory glycinergic neurons in the caudal NTS (cNTS) and intermediate NTS (iNTS). Vagotomized animals receiving transient respiratory loads did not exhibit these load compensation responses. In addition, vagotomy significantly reduced the activation of inhibitory glycinergic neurons in the cNTS and iNTS. The results suggest that these activated inhibitory glycinergic neurons in the NTS might be essential for the neurogenesis of load compensation responses in anesthetized animals.


2019 ◽  
Vol 79 ◽  
pp. 38-44 ◽  
Author(s):  
Haerim Bak ◽  
Clive D'Souza ◽  
Gwanseob Shin

Measurement ◽  
2018 ◽  
Vol 121 ◽  
pp. 73-82
Author(s):  
Vieroslav Molnár ◽  
Gabriel Fedorko ◽  
David Tuček ◽  
Zuzana Tučková
Keyword(s):  

2022 ◽  
Vol 11 (1) ◽  
pp. 1-27
Author(s):  
Luis F. C. Figueredo ◽  
Rafael De Castro Aguiar ◽  
Lipeng Chen ◽  
Thomas C. Richards ◽  
Samit Chakrabarty ◽  
...  

This work addresses the problem of planning a robot configuration and grasp to position a shared object during forceful human-robot collaboration, such as a puncturing or a cutting task. Particularly, our goal is to find a robot configuration that positions the jointly manipulated object such that the muscular effort of the human, operating on the same object, is minimized while also ensuring the stability of the interaction for the robot. This raises three challenges. First, we predict the human muscular effort given a human-robot combined kinematic configuration and the interaction forces of a task. To do this, we perform task-space to muscle-space mapping for two different musculoskeletal models of the human arm. Second, we predict the human body kinematic configuration given a robot configuration and the resulting object pose in the workspace. To do this, we assume that the human prefers the body configuration that minimizes the muscular effort. And third, we ensure that, under the forces applied by the human, the robot grasp on the object is stable and the robot joint torques are within limits. Addressing these three challenges, we build a planner that, given a forceful task description, can output the robot grasp on an object and the robot configuration to position the shared object in space. We quantitatively analyze the performance of the planner and the validity of our assumptions. We conduct experiments with human subjects to measure their kinematic configurations, muscular activity, and force output during collaborative puncturing and cutting tasks. The results illustrate the effectiveness of our planner in reducing the human muscular load. For instance, for the puncturing task, our planner is able to reduce muscular load by 69.5\% compared to a user-based selection of object poses.


Sign in / Sign up

Export Citation Format

Share Document