Space object detection technology

Author(s):  
Zhang Rongzhi ◽  
Yang Kaizhong
2021 ◽  
Vol 11 (9) ◽  
pp. 3782
Author(s):  
Chu-Hui Lee ◽  
Chen-Wei Lin

Object detection is one of the important technologies in the field of computer vision. In the area of fashion apparel, object detection technology has various applications, such as apparel recognition, apparel detection, fashion recommendation, and online search. The recognition task is difficult for a computer because fashion apparel images have different characteristics of clothing appearance and material. Currently, fast and accurate object detection is the most important goal in this field. In this study, we proposed a two-phase fashion apparel detection method named YOLOv4-TPD (YOLOv4 Two-Phase Detection), based on the YOLOv4 algorithm, to address this challenge. The target categories for model detection were divided into the jacket, top, pants, skirt, and bag. According to the definition of inductive transfer learning, the purpose was to transfer the knowledge from the source domain to the target domain that could improve the effect of tasks in the target domain. Therefore, we used the two-phase training method to implement the transfer learning. Finally, the experimental results showed that the mAP of our model was better than the original YOLOv4 model through the two-phase transfer learning. The proposed model has multiple potential applications, such as an automatic labeling system, style retrieval, and similarity detection.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6779
Author(s):  
Byung-Gil Han ◽  
Joon-Goo Lee ◽  
Kil-Taek Lim ◽  
Doo-Hyun Choi

With the increase in research cases of the application of a convolutional neural network (CNN)-based object detection technology, studies on the light-weight CNN models that can be performed in real time on the edge-computing devices are also increasing. This paper proposed scalable convolutional blocks that can be easily designed CNN networks of You Only Look Once (YOLO) detector which have the balanced processing speed and accuracy of the target edge-computing devices considering different performances by exchanging the proposed blocks simply. The maximum number of kernels of the convolutional layer was determined through simple but intuitive speed comparison tests for three edge-computing devices to be considered. The scalable convolutional blocks were designed in consideration of the limited maximum number of kernels to detect objects in real time on these edge-computing devices. Three scalable and fast YOLO detectors (SF-YOLO) which designed using the proposed scalable convolutional blocks compared the processing speed and accuracy with several conventional light-weight YOLO detectors on the edge-computing devices. When compared with YOLOv3-tiny, SF-YOLO was seen to be 2 times faster than the previous processing speed but with the same accuracy as YOLOv3-tiny, and also, a 48% improved processing speed than the YOLOv3-tiny-PRN which is the processing speed improvement model. Also, even in the large SF-YOLO model that focuses on the accuracy performance, it achieved a 10% faster processing speed with better accuracy of 40.4% [email protected] in the MS COCO dataset than YOLOv4-tiny model.


Author(s):  
Claremary James ◽  
Varghese James

Object detection is a title that has earned significances over several fields which have always benefitted socially during circumstances, namely incidents involving human endangerment such as natural disaster where threat may occur in the form of an earthquake, human entrapment underneath rubbles per se. The usage of PIR (Passive Infrared Rays) motion detector to detect humans, objects and other living beings through their movement, has proven the ability in handling situations where such detection is the best chance. However, this approach is not utilized in every situation. In the proposed research paper, an object occupancy detection technology notion is detailed which will describe the function to detect the occupancy or presence of human in an area, specifically transport vehicles that will help in determining passengers inside and to find lost objects as well. The motive behind raising this technological need is to aid or assist in occurrence wherein facing difficulty to find an object being lost or misplaced in a space, as well to detect the humans occupied. This assistance shall ease the detection of occupancy and identifying the lost object. The comprehended object occupancy idea is utilized to recognize the humans and object detection. The implementation idea shall facilitate the utilization of PIR-based motion detector sensor to recognize human presence as well as SlimYOLOv3 framework to identify objects. Circumstances where the occupancy of humans are counted and object to be identified are the main output.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Di Tian ◽  
Yi Han ◽  
Biyao Wang ◽  
Tian Guan ◽  
Wei Wei

Pedestrian detection is a specific application of object detection. Compared with general object detection, it shows similarities and unique characteristics. In addition, it has important application value in the fields of intelligent driving and security monitoring. In recent years, with the rapid development of deep learning, pedestrian detection technology has also made great progress. However, there still exists a huge gap between it and human perception. Meanwhile, there are still a lot of problems, and there remains a lot of room for research. Regarding the application of pedestrian detection in intelligent driving technology, it is of necessity to ensure its real-time performance. Additionally, it is necessary to lighten the model while ensuring detection accuracy. This paper first briefly describes the development process of pedestrian detection and then concentrates on summarizing the research results of pedestrian detection technology in the deep learning stage. Subsequently, by summarizing the pedestrian detection dataset and evaluation criteria, the core issues of the current development of pedestrian detection are analyzed. Finally, the next possible development direction of pedestrian detection technology is explained at the end of the paper.


2020 ◽  
Vol 44 (3) ◽  
pp. 375-384
Author(s):  
I.G. Zhurkin ◽  
L.N. Chaban ◽  
P.Yu. Orlov

When solving a variety of celestial navigation tasks there is a problem of determining parameters of spacecraft motion and onboard primary payload orientation based on the coordinates of registered star images. Furthermore, unwanted objects, like active satellites, natural and artificial space debris, that reduce the probability of correct recognition may get into the field of view of a satellite sensor. This prompts the necessity to filter out such interference from the star field images. However, if the objects under recognition are bodies located in near-Earth space, in this case, the star images themselves will act as interferences. In addition, since the detection and cataloging of these objects from the Earth’s surface is complicated by their small size, the atmospheric effects, as well as other technical difficulties, it is worthwhile to use the existing equipment onboard spacecrafts to solve this task. The existing recognition algorithms for star groups, as well as their classification, are presented in this paper. Moreover, a structurally topological approach for identifying groups of stars based on the properties of enveloping polygons used in constructing topological star patterns is proposed. Specific features in the construction of topological configurations on the analyzed set of points, as well as the principles of dynamic space object detection within their limits are described. Results of the numerical experiments performed using the developed algorithm on the star field maps and model scenes are presented.


Sign in / Sign up

Export Citation Format

Share Document