general object
Recently Published Documents


TOTAL DOCUMENTS

131
(FIVE YEARS 47)

H-INDEX

12
(FIVE YEARS 3)

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7949
Author(s):  
Mengfan Xue ◽  
Minghao Chen ◽  
Dongliang Peng ◽  
Yunfei Guo ◽  
Huajie Chen

Attention mechanisms have demonstrated great potential in improving the performance of deep convolutional neural networks (CNNs). However, many existing methods dedicate to developing channel or spatial attention modules for CNNs with lots of parameters, and complex attention modules inevitably affect the performance of CNNs. During our experiments of embedding Convolutional Block Attention Module (CBAM) in light-weight model YOLOv5s, CBAM does influence the speed and increase model complexity while reduce the average precision, but Squeeze-and-Excitation (SE) has a positive impact in the model as part of CBAM. To replace the spatial attention module in CBAM and offer a suitable scheme of channel and spatial attention modules, this paper proposes one Spatio-temporal Sharpening Attention Mechanism (SSAM), which sequentially infers intermediate maps along channel attention module and Sharpening Spatial Attention (SSA) module. By introducing sharpening filter in spatial attention module, we propose SSA module with low complexity. We try to find a scheme to combine our SSA module with SE module or Efficient Channel Attention (ECA) module and show best improvement in models such as YOLOv5s and YOLOv3-tiny. Therefore, we perform various replacement experiments and offer one best scheme that is to embed channel attention modules in backbone and neck of the model and integrate SSAM into YOLO head. We verify the positive effect of our SSAM on two general object detection datasets VOC2012 and MS COCO2017. One for obtaining a suitable scheme and the other for proving the versatility of our method in complex scenes. Experimental results on the two datasets show obvious promotion in terms of average precision and detection performance, which demonstrates the usefulness of our SSAM in light-weight YOLO models. Furthermore, visualization results also show the advantage of enhancing positioning ability with our SSAM.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Kaifeng Li ◽  
Bin Wang

With the rapid development of deep learning and the wide usage of Unmanned Aerial Vehicles (UAVs), CNN-based algorithms of vehicle detection in aerial images have been widely studied in the past several years. As a downstream task of the general object detection, there are some differences between the vehicle detection in aerial images and the general object detection in ground view images, e.g., larger image areas, smaller target sizes, and more complex background. In this paper, to improve the performance of this task, a Dense Attentional Residual Network (DAR-Net) is proposed. The proposed network employs a novel dense waterfall residual block (DW res-block) to effectively preserve the spatial information and extract high-level semantic information at the same time. A multiscale receptive field attention (MRFA) module is also designed to select the informative feature from the feature maps and enhance the ability of multiscale perception. Based on the DW res-block and MRFA module, to protect the spatial information, the proposed framework adopts a new backbone that only downsamples the feature map 3 times; i.e., the total downsampling ratio of the proposed backbone is 8. These designs could alleviate the degradation problem, improve the information flow, and strengthen the feature reuse. In addition, deep-projection units are used to reduce the impact of information loss caused by downsampling operations, and the identity mapping is applied to each stage of the proposed backbone to further improve the information flow. The proposed DAR-Net is evaluated on VEDAI, UCAS-AOD, and DOTA datasets. The experimental results demonstrate that the proposed framework outperforms other state-of-the-art algorithms.


2021 ◽  
Author(s):  
Junying Huang ◽  
Fan Chen ◽  
Liang Lin ◽  
dongyu zhang

Aiming at recognizing and localizing the object of novel categories by a few reference samples, few-shot object detection is a quite challenging task. Previous works often depend on the fine-tuning process to transfer their model to the novel category and rarely consider the defect of fine-tuning, resulting in many drawbacks. For example, these methods are far from satisfying in the low-shot or episode-based scenarios since the fine-tuning process in object detection requires much time and high-shot support data. To this end, this paper proposes a plug-and-play few-shot object detection (PnP-FSOD) framework that can accurately and directly detect the objects of novel categories without the fine-tuning process. To accomplish the objective, the PnP-FSOD framework contains two parallel techniques to address the core challenges in the few-shot learning, i.e., across-category task and few-annotation support. Concretely, we first propose two simple but effective meta strategies for the box classifier and RPN module to enable the across-category object detection without fine-tuning. Then, we introduce two explicit inferences into the localization process to reduce its dependence on the annotated data, including explicit localization score and semi-explicit box regression. In addition to the PnP-FSOD framework, we propose a novel one-step tuning method that can avoid the defects in fine-tuning. It is noteworthy that the proposed techniques and tuning method are based on the general object detector without other prior methods, so they are easily compatible with the existing FSOD methods. Extensive experiments show that the PnP-FSOD framework has achieved the state-of-the-art few-shot object detection performance without any tuning method. After applying the one-step tuning method, it further shows a significant lead in both efficiency, precision, and recall, under varied few-shot evaluation protocols.


2021 ◽  
Author(s):  
Junying Huang ◽  
Fan Chen ◽  
Liang Lin ◽  
dongyu zhang

Aiming at recognizing and localizing the object of novel categories by a few reference samples, few-shot object detection is a quite challenging task. Previous works often depend on the fine-tuning process to transfer their model to the novel category and rarely consider the defect of fine-tuning, resulting in many drawbacks. For example, these methods are far from satisfying in the low-shot or episode-based scenarios since the fine-tuning process in object detection requires much time and high-shot support data. To this end, this paper proposes a plug-and-play few-shot object detection (PnP-FSOD) framework that can accurately and directly detect the objects of novel categories without the fine-tuning process. To accomplish the objective, the PnP-FSOD framework contains two parallel techniques to address the core challenges in the few-shot learning, i.e., across-category task and few-annotation support. Concretely, we first propose two simple but effective meta strategies for the box classifier and RPN module to enable the across-category object detection without fine-tuning. Then, we introduce two explicit inferences into the localization process to reduce its dependence on the annotated data, including explicit localization score and semi-explicit box regression. In addition to the PnP-FSOD framework, we propose a novel one-step tuning method that can avoid the defects in fine-tuning. It is noteworthy that the proposed techniques and tuning method are based on the general object detector without other prior methods, so they are easily compatible with the existing FSOD methods. Extensive experiments show that the PnP-FSOD framework has achieved the state-of-the-art few-shot object detection performance without any tuning method. After applying the one-step tuning method, it further shows a significant lead in both efficiency, precision, and recall, under varied few-shot evaluation protocols.


Author(s):  
Anibal Pedraza ◽  
Oscar Deniz ◽  
Gloria Bueno

AbstractThe phenomenon of Adversarial Examples has become one of the most intriguing topics associated to deep learning. The so-called adversarial attacks have the ability to fool deep neural networks with inappreciable perturbations. While the effect is striking, it has been suggested that such carefully selected injected noise does not necessarily appear in real-world scenarios. In contrast to this, some authors have looked for ways to generate adversarial noise in physical scenarios (traffic signs, shirts, etc.), thus showing that attackers can indeed fool the networks. In this paper we go beyond that and show that adversarial examples also appear in the real-world without any attacker or maliciously selected noise involved. We show this by using images from tasks related to microscopy and also general object recognition with the well-known ImageNet dataset. A comparison between these natural and the artificially generated adversarial examples is performed using distance metrics and image quality metrics. We also show that the natural adversarial examples are in fact at a higher distance from the originals that in the case of artificially generated adversarial examples.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fatema Tuz Zohora ◽  
M. Ziaur Rahman ◽  
Ngoc Hieu Tran ◽  
Lei Xin ◽  
Baozhen Shan ◽  
...  

AbstractA promising technique of discovering disease biomarkers is to measure the relative protein abundance in multiple biofluid samples through liquid chromatography with tandem mass spectrometry (LC-MS/MS) based quantitative proteomics. The key step involves peptide feature detection in the LC-MS map, along with its charge and intensity. Existing heuristic algorithms suffer from inaccurate parameters and human errors. As a solution, we propose PointIso, the first point cloud based arbitrary-precision deep learning network to address this problem. It consists of attention based scanning step for segmenting the multi-isotopic pattern of 3D peptide features along with the charge, and a sequence classification step for grouping those isotopes into potential peptide features. PointIso achieves 98% detection of high-quality MS/MS identified peptide features in a benchmark dataset. Next, the model is adapted for handling the additional ‘ion mobility’ dimension and achieves 4% higher detection than existing algorithms on the human proteome dataset. Besides contributing to the proteomics study, our novel segmentation technique should serve the general object detection domain as well.


2021 ◽  
Vol 16 (7) ◽  
pp. 110-124
Author(s):  
B. A. Shakhnazarov

The paper discusses the terminological aspects of the system of legal regulation of cross-border relations in the field of industrial property. The use of the term “cross-border relations” does not in itself imply the overcoming of the territorial principle of industrial property protection. Transboundariness as a characteristic of private-law relations, which presupposes a complication of the relationship by a foreign element, means the presence of any connection between the relationship (through a subject or legal fact in the case of cross-border relations in the field of industrial property) with the legal order of several states. It is proposed to define industrial property as rights (exclusive and personal non-property) related to intellectual property in the production-technical and production-trade areas. The system of legal regulation of cross-border relations in the field of industrial property is defined by the author as a coherent group of norms consisting of interrelated and interdependent principles of protection of industrial property (universal, general object and special object), other international and national substantive legal and national conflict-of-laws norms subordinate to these principles, as well as individual norms of non-state nature, subordinate to all the specified legal norms, regulating relations complicated by a foreign element regarding the emergence, use, transfer, restriction, termination, protection of rights to industrial property. In this case, a foreign element in a legal relationship can be represented by the subject, as well as by a legal fact: the place of violation of the right to the industrial property object, the place of execution of the formalities necessary for the protection of the industrial property object, as well as the place of occurrence of the consequences of harm caused by the violation of rights to intellectual property object.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Di Tian ◽  
Yi Han ◽  
Biyao Wang ◽  
Tian Guan ◽  
Wei Wei

Pedestrian detection is a specific application of object detection. Compared with general object detection, it shows similarities and unique characteristics. In addition, it has important application value in the fields of intelligent driving and security monitoring. In recent years, with the rapid development of deep learning, pedestrian detection technology has also made great progress. However, there still exists a huge gap between it and human perception. Meanwhile, there are still a lot of problems, and there remains a lot of room for research. Regarding the application of pedestrian detection in intelligent driving technology, it is of necessity to ensure its real-time performance. Additionally, it is necessary to lighten the model while ensuring detection accuracy. This paper first briefly describes the development process of pedestrian detection and then concentrates on summarizing the research results of pedestrian detection technology in the deep learning stage. Subsequently, by summarizing the pedestrian detection dataset and evaluation criteria, the core issues of the current development of pedestrian detection are analyzed. Finally, the next possible development direction of pedestrian detection technology is explained at the end of the paper.


Author(s):  
Hao Huang ◽  
Yongtao Wang ◽  
Zhaoyu Chen ◽  
Zhi Tang ◽  
Wenqiang Zhang ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document