Approximate Solution Methods for One-Dimensional Media

2022 ◽  
pp. 497-511
Author(s):  
Michael F. Modest ◽  
Sandip Mazumder
2006 ◽  
Vol 6 (3) ◽  
pp. 264-268
Author(s):  
G. Berikelashvili ◽  
G. Karkarashvili

AbstractA method of approximate solution of the linear one-dimensional Fredholm integral equation of the second kind is constructed. With the help of the Steklov averaging operator the integral equation is approximated by a system of linear algebraic equations. On the basis of the approximation used an increased order convergence solution has been obtained.


2020 ◽  
Vol 9 (1) ◽  
pp. 370-381
Author(s):  
Dinkar Sharma ◽  
Gurpinder Singh Samra ◽  
Prince Singh

AbstractIn this paper, homotopy perturbation sumudu transform method (HPSTM) is proposed to solve fractional attractor one-dimensional Keller-Segel equations. The HPSTM is a combined form of homotopy perturbation method (HPM) and sumudu transform using He’s polynomials. The result shows that the HPSTM is very efficient and simple technique for solving nonlinear partial differential equations. Test examples are considered to illustrate the present scheme.


2008 ◽  
Vol 49 (8) ◽  
pp. 2214-2224 ◽  
Author(s):  
Wen-Lih Chen ◽  
King-Leung Wong ◽  
Tsung-Lieh Hsien ◽  
Ching-Te Huang

Author(s):  
Amarjot Singh Bhullar ◽  
Gospel Ezekiel Stewart ◽  
Robert W. Zimmerman

Abstract Most analyses of fluid flow in porous media are conducted under the assumption that the permeability is constant. In some “stress-sensitive” rock formations, however, the variation of permeability with pore fluid pressure is sufficiently large that it needs to be accounted for in the analysis. Accounting for the variation of permeability with pore pressure renders the pressure diffusion equation nonlinear and not amenable to exact analytical solutions. In this paper, the regular perturbation approach is used to develop an approximate solution to the problem of flow to a linear constant-pressure boundary, in a formation whose permeability varies exponentially with pore pressure. The perturbation parameter αD is defined to be the natural logarithm of the ratio of the initial permeability to the permeability at the outflow boundary. The zeroth-order and first-order perturbation solutions are computed, from which the flux at the outflow boundary is found. An effective permeability is then determined such that, when inserted into the analytical solution for the mathematically linear problem, it yields a flux that is exact to at least first order in αD. When compared to numerical solutions of the problem, the result has 5% accuracy out to values of αD of about 2—a much larger range of accuracy than is usually achieved in similar problems. Finally, an explanation is given of why the change of variables proposed by Kikani and Pedrosa, which leads to highly accurate zeroth-order perturbation solutions in radial flow problems, does not yield an accurate result for one-dimensional flow. Article Highlights Approximate solution for flow to a constant-pressure boundary in a porous medium whose permeability varies exponentially with pressure. The predicted flowrate is accurate to within 5% for a wide range of permeability variations. If permeability at boundary is 30% less than initial permeability, flowrate will be 10% less than predicted by constant-permeability model.


Sign in / Sign up

Export Citation Format

Share Document