The Transient Reactor Test (TREAT) Facility at the Idaho National Laboratory

Author(s):  
Daniel Wachs ◽  
Nicolas Woolstenhulme ◽  
Colby Jensen ◽  
James Parry
Author(s):  
Aaron S. Epiney ◽  
Nicolas Woolstenhulme

Abstract The Transient Reactor Test (TREAT) Facility at Idaho National Laboratory (INL) started testing new fuels and reactor technologies once again in 2018 and new experiments and tests are currently being designed like for example the water loop “TREAT Water Environment Recirculating Loop” (TWERL). During the design of such experiments, the designer must assess how close the experiment reproduces the physics (and other important phenomena) happening during a transient of interest compared to the full-size reactor the experiment attempts representing. Traditionally, to assess this “representativity” of the experiment, scaling theory involving expert judgment is needed. This paper presents a step towards a systematic modeling and simulation (M&S) informed methodology for experiment design. The new methodology compares a model of the full system and a model of the mock-up facility that are subject to the same perturbations. In this way, the “overlap” of the perturbed experiment and full-size facility model outputs can be analyzed and the “representativity” of the experiment determined. The paper presents a RELAP5-3D analysis, where TWERL LOCA calculations are compared to prototypic PWR LOCA calculations with respect to representativity. To inform the design of the TWERL experiments, i.e. to find the most “representative” configuration for the TWERL loop, different design parameters for TWERL have been optimized in the study.


Author(s):  
Seokbin Seo ◽  
Nicholas R. Brown ◽  
Robert J. Armstrong ◽  
Charles P. Folsom ◽  
Colby B. Jensen

Abstract Reactivity-initiated accidents (RIAs) are one of the postulated incidents that can threaten the operational safety of a nuclear reactor. During a RIA, a rapid increase of energy deposition in the fuel can lead to a departure from nucleate boiling (DNB) occurrence which refers to the point where a drastic decrease in heat transfer capabilities occurs and the surface heat flux exceeds the critical heat flux (CHF). Aiming to understand the fundamentals beneath CHF and to predict it, the Transient Reactor Test (TREAT) facility at the Idaho National Laboratory (INL) is a unique facility that will be used to experimentally investigate the transient CHF under in-pile pool boiling condition. As part of a comprehensive effort to utilize TREAT for this project, this study analyzed the expected uncertainties in the experimental data by identifying the key inputs for the uncertainty in the temperature measurements and quantifying their priorities. The sensitivities of key inputs from neutronics modeling, the clad-to-coolant heat transfer, thermophysical properties of the tube, and coolant conditions were quantified using Sobol sensitivity analysis methods, and the significant effect of the occurrence of the CHF on the sensitivity of input was found.


2007 ◽  
Author(s):  
Clayton F. Marler ◽  
Julie Braun ◽  
Hollie Gilbert ◽  
Dino Lowrey ◽  
Brenda Ringe Pace

Sign in / Sign up

Export Citation Format

Share Document